{"title":"变化环境下感知器训练的目标值控制","authors":"S. Raudys","doi":"10.1109/ICNC.2008.891","DOIUrl":null,"url":null,"abstract":"To ensure fast adaptation and security of social and computerized systems to changing environments, targets of perceptron based classifiers ought to vary during training process. To determine optimal differences between target values (stimulation, arousal) we suggest using genetically evolving multi-agent systems aimed to extract necessary information from sequences of the changes. A specially designed additional feedback chain allows updating the target values faster.","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"21 1","pages":"54-58"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Target Value Control While Training the Perceptrons in Changing Environments\",\"authors\":\"S. Raudys\",\"doi\":\"10.1109/ICNC.2008.891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To ensure fast adaptation and security of social and computerized systems to changing environments, targets of perceptron based classifiers ought to vary during training process. To determine optimal differences between target values (stimulation, arousal) we suggest using genetically evolving multi-agent systems aimed to extract necessary information from sequences of the changes. A specially designed additional feedback chain allows updating the target values faster.\",\"PeriodicalId\":6404,\"journal\":{\"name\":\"2008 Fourth International Conference on Natural Computation\",\"volume\":\"21 1\",\"pages\":\"54-58\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Fourth International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2008.891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Target Value Control While Training the Perceptrons in Changing Environments
To ensure fast adaptation and security of social and computerized systems to changing environments, targets of perceptron based classifiers ought to vary during training process. To determine optimal differences between target values (stimulation, arousal) we suggest using genetically evolving multi-agent systems aimed to extract necessary information from sequences of the changes. A specially designed additional feedback chain allows updating the target values faster.