图像挖掘:聚类鞋印的案例

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Wei Sun, D. Taniar, T. Torabi
{"title":"图像挖掘:聚类鞋印的案例","authors":"Wei Sun, D. Taniar, T. Torabi","doi":"10.4018/jitwe.2008010105","DOIUrl":null,"url":null,"abstract":"Advances in image acquisition and storage technology have led to tremendous growth in very large and detailed image databases. These images, once analysed, can reveal useful information to our uses. The focus for image mining in this article is clustering of shoe prints. This study leads to the work in forensic data mining. In this article, we cluster selected shoe prints using k-means and expectation maximisation (EM). We analyse and compare the results of these two algorithms.","PeriodicalId":51925,"journal":{"name":"International Journal of Information Technology and Web Engineering","volume":"287 1","pages":"1552-1567"},"PeriodicalIF":0.6000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Image Mining: A Case for Clustering Shoe prints\",\"authors\":\"Wei Sun, D. Taniar, T. Torabi\",\"doi\":\"10.4018/jitwe.2008010105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in image acquisition and storage technology have led to tremendous growth in very large and detailed image databases. These images, once analysed, can reveal useful information to our uses. The focus for image mining in this article is clustering of shoe prints. This study leads to the work in forensic data mining. In this article, we cluster selected shoe prints using k-means and expectation maximisation (EM). We analyse and compare the results of these two algorithms.\",\"PeriodicalId\":51925,\"journal\":{\"name\":\"International Journal of Information Technology and Web Engineering\",\"volume\":\"287 1\",\"pages\":\"1552-1567\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2008-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology and Web Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jitwe.2008010105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology and Web Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jitwe.2008010105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 32

摘要

图像采集和存储技术的进步导致了非常庞大和详细的图像数据库的巨大增长。这些图像一经分析,就可以为我们提供有用的信息。本文中图像挖掘的重点是鞋印的聚类。本研究为法医数据挖掘的研究提供了基础。在本文中,我们使用k-means和期望最大化(EM)对选定的鞋印进行聚类。我们对这两种算法的结果进行了分析和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Mining: A Case for Clustering Shoe prints
Advances in image acquisition and storage technology have led to tremendous growth in very large and detailed image databases. These images, once analysed, can reveal useful information to our uses. The focus for image mining in this article is clustering of shoe prints. This study leads to the work in forensic data mining. In this article, we cluster selected shoe prints using k-means and expectation maximisation (EM). We analyse and compare the results of these two algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
24
期刊介绍: Organizations are continuously overwhelmed by a variety of new information technologies, many are Web based. These new technologies are capitalizing on the widespread use of network and communication technologies for seamless integration of various issues in information and knowledge sharing within and among organizations. This emphasis on integrated approaches is unique to this journal and dictates cross platform and multidisciplinary strategy to research and practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信