算子和的不动点指标理论及其在一类微分方程和偏微分方程上的应用

IF 0.6 Q3 MATHEMATICS
Svetlin Georgiev Georgiev, K. Mebarki
{"title":"算子和的不动点指标理论及其在一类微分方程和偏微分方程上的应用","authors":"Svetlin Georgiev Georgiev, K. Mebarki","doi":"10.4995/agt.2021.13248","DOIUrl":null,"url":null,"abstract":"The aim of this work is two fold: first  we  extend some results concerning the computation of the fixed point index for the sum of an expansive mapping and a $k$-set contraction  obtained in \\cite{DjebaMeb, Svet-Meb}, to  the case of the sum $T+F$, where $T$ is a mapping such that $(I-T)$ is Lipschitz invertible and $F$ is a $k$-set contraction.  Secondly, as  illustration of some our theoretical results,  we study  the existence of positive solutions  for two classes of differential equations, covering a class of first-order ordinary differential equations (ODEs for short) posed on the positive half-line as well as  a class of  partial differential equations (PDEs for short).","PeriodicalId":8046,"journal":{"name":"Applied general topology","volume":"728 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On fixed point index theory for the sum of operators and applications to a class of ODEs and PDEs\",\"authors\":\"Svetlin Georgiev Georgiev, K. Mebarki\",\"doi\":\"10.4995/agt.2021.13248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is two fold: first  we  extend some results concerning the computation of the fixed point index for the sum of an expansive mapping and a $k$-set contraction  obtained in \\\\cite{DjebaMeb, Svet-Meb}, to  the case of the sum $T+F$, where $T$ is a mapping such that $(I-T)$ is Lipschitz invertible and $F$ is a $k$-set contraction.  Secondly, as  illustration of some our theoretical results,  we study  the existence of positive solutions  for two classes of differential equations, covering a class of first-order ordinary differential equations (ODEs for short) posed on the positive half-line as well as  a class of  partial differential equations (PDEs for short).\",\"PeriodicalId\":8046,\"journal\":{\"name\":\"Applied general topology\",\"volume\":\"728 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied general topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/agt.2021.13248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied general topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/agt.2021.13248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

这项工作的目的有两个方面:首先,我们将在\cite{DjebaMeb, Svet-Meb}中得到的关于膨胀映射和$k$ -集合收缩和的不动点指数计算的一些结果推广到和$T+F$的情况,其中$T$是一个映射,使得$(I-T)$是Lipschitz可逆的,$F$是$k$ -集合收缩。其次,为了说明我们的一些理论结果,我们研究了两类微分方程正解的存在性,包括一类在正半线上的一阶常微分方程(简称ode)和一类偏微分方程(简称PDEs)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On fixed point index theory for the sum of operators and applications to a class of ODEs and PDEs
The aim of this work is two fold: first  we  extend some results concerning the computation of the fixed point index for the sum of an expansive mapping and a $k$-set contraction  obtained in \cite{DjebaMeb, Svet-Meb}, to  the case of the sum $T+F$, where $T$ is a mapping such that $(I-T)$ is Lipschitz invertible and $F$ is a $k$-set contraction.  Secondly, as  illustration of some our theoretical results,  we study  the existence of positive solutions  for two classes of differential equations, covering a class of first-order ordinary differential equations (ODEs for short) posed on the positive half-line as well as  a class of  partial differential equations (PDEs for short).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
25.00%
发文量
38
审稿时长
15 weeks
期刊介绍: The international journal Applied General Topology publishes only original research papers related to the interactions between General Topology and other mathematical disciplines as well as topological results with applications to other areas of Science, and the development of topological theories of sufficiently general relevance to allow for future applications. Submissions are strictly refereed. Contributions, which should be in English, can be sent either to the appropriate member of the Editorial Board or to one of the Editors-in-Chief. All papers are reviewed in Mathematical Reviews and Zentralblatt für Mathematik.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信