基于时变神经网络的脑电分类。

E. Haselsteiner, G. Pfurtscheller
{"title":"基于时变神经网络的脑电分类。","authors":"E. Haselsteiner, G. Pfurtscheller","doi":"10.1109/86.895948","DOIUrl":null,"url":null,"abstract":"This paper compares two different topologies of neural networks. They are used to classify single trial electroencephalograph (EEG) data from a brain-computer interface (BCI). A short introduction to time series classification is given, and the used classifiers are described. Standard multilayer perceptrons (MLPs) are used as a standard method for classification. They are compared to finite impulse response (FIR) MLPs, which use FIR filters instead of static weights to allow temporal processing inside the classifier. A theoretical comparison of the two architectures is presented. The results of a BCI experiment with three different subjects are given and discussed. These results demonstrate the higher performance of the FIR MLP compared with the standard MLP.","PeriodicalId":79442,"journal":{"name":"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society","volume":"703 1","pages":"457-63"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"278","resultStr":"{\"title\":\"Using time-dependent neural networks for EEG classification.\",\"authors\":\"E. Haselsteiner, G. Pfurtscheller\",\"doi\":\"10.1109/86.895948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper compares two different topologies of neural networks. They are used to classify single trial electroencephalograph (EEG) data from a brain-computer interface (BCI). A short introduction to time series classification is given, and the used classifiers are described. Standard multilayer perceptrons (MLPs) are used as a standard method for classification. They are compared to finite impulse response (FIR) MLPs, which use FIR filters instead of static weights to allow temporal processing inside the classifier. A theoretical comparison of the two architectures is presented. The results of a BCI experiment with three different subjects are given and discussed. These results demonstrate the higher performance of the FIR MLP compared with the standard MLP.\",\"PeriodicalId\":79442,\"journal\":{\"name\":\"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society\",\"volume\":\"703 1\",\"pages\":\"457-63\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"278\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/86.895948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/86.895948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 278

摘要

本文比较了两种不同的神经网络拓扑结构。它们被用来对来自脑机接口(BCI)的单次试验脑电图(EEG)数据进行分类。简要介绍了时间序列分类,并对常用的分类器进行了描述。标准多层感知器(mlp)是一种标准的分类方法。将它们与有限脉冲响应(FIR) mlp进行比较,后者使用FIR滤波器而不是静态权重来允许在分类器内部进行时间处理。对这两种体系结构进行了理论比较。本文给出并讨论了三种不同主体的脑机接口实验结果。这些结果表明,与标准MLP相比,FIR MLP具有更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using time-dependent neural networks for EEG classification.
This paper compares two different topologies of neural networks. They are used to classify single trial electroencephalograph (EEG) data from a brain-computer interface (BCI). A short introduction to time series classification is given, and the used classifiers are described. Standard multilayer perceptrons (MLPs) are used as a standard method for classification. They are compared to finite impulse response (FIR) MLPs, which use FIR filters instead of static weights to allow temporal processing inside the classifier. A theoretical comparison of the two architectures is presented. The results of a BCI experiment with three different subjects are given and discussed. These results demonstrate the higher performance of the FIR MLP compared with the standard MLP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信