变压器绝缘用多颗粒矿物油纳米流体填料填充优化研究

S. Sarov Mohan, P. Preetha
{"title":"变压器绝缘用多颗粒矿物油纳米流体填料填充优化研究","authors":"S. Sarov Mohan, P. Preetha","doi":"10.1109/ICD46958.2020.9341838","DOIUrl":null,"url":null,"abstract":"Transformers are critical components of electric power transmission and distribution system. Mineral oil (MO) based multi-particle nanofluid (MPNF) were prepared with an intention to enhance electrical properties of MO by incorporating $A1_{2}O_{3}$ and TiO2 nanoparticles. Filler loading concentration and mixing ratio, which is the ratio between $A1_{2}O_{3}$ and TiO2 nanoparticle content is optimized by analyzing the simulation results. AC breakdown strength of the prepared samples were measured. It is found that, MPNF sample having a filler loading concentration of 0.1weight percentage (wt%) and mixing ratio of 9:1 shows highest AC breakdown strength. This sample shows an enhancement of 38.4%, 15.86%, and 17.41%, w.r.t pure oil, $A1_{2}O_{3}$ and TiO2 NFs having same filler loading concentration.","PeriodicalId":6795,"journal":{"name":"2020 IEEE 3rd International Conference on Dielectrics (ICD)","volume":"14 1","pages":"712-715"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimization of Filler Loading of Multi-Particle Mineral Oil Nanofluid for Transformer Insulation\",\"authors\":\"S. Sarov Mohan, P. Preetha\",\"doi\":\"10.1109/ICD46958.2020.9341838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transformers are critical components of electric power transmission and distribution system. Mineral oil (MO) based multi-particle nanofluid (MPNF) were prepared with an intention to enhance electrical properties of MO by incorporating $A1_{2}O_{3}$ and TiO2 nanoparticles. Filler loading concentration and mixing ratio, which is the ratio between $A1_{2}O_{3}$ and TiO2 nanoparticle content is optimized by analyzing the simulation results. AC breakdown strength of the prepared samples were measured. It is found that, MPNF sample having a filler loading concentration of 0.1weight percentage (wt%) and mixing ratio of 9:1 shows highest AC breakdown strength. This sample shows an enhancement of 38.4%, 15.86%, and 17.41%, w.r.t pure oil, $A1_{2}O_{3}$ and TiO2 NFs having same filler loading concentration.\",\"PeriodicalId\":6795,\"journal\":{\"name\":\"2020 IEEE 3rd International Conference on Dielectrics (ICD)\",\"volume\":\"14 1\",\"pages\":\"712-715\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 3rd International Conference on Dielectrics (ICD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICD46958.2020.9341838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 3rd International Conference on Dielectrics (ICD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICD46958.2020.9341838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

变压器是输配电系统的关键部件。摘要制备了矿物油(MO)基多粒子纳米流体(MPNF),通过加入$A1_{2}O_{3}$和TiO2纳米颗粒来提高MO的电性能。通过对模拟结果的分析,优化了填料的加载浓度和掺量配比,即$A1_{2}O_{3}$与TiO2纳米颗粒含量之比。测定了制备样品的交流击穿强度。结果表明,填料浓度为0.1重量百分比(wt%)、掺量比为9:1时,MPNF试样的交流击穿强度最高。在相同填料浓度下,纯油、$A1_{2}O_{3}$和TiO2 NFs的增强率分别为38.4%、15.86%和17.41%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Filler Loading of Multi-Particle Mineral Oil Nanofluid for Transformer Insulation
Transformers are critical components of electric power transmission and distribution system. Mineral oil (MO) based multi-particle nanofluid (MPNF) were prepared with an intention to enhance electrical properties of MO by incorporating $A1_{2}O_{3}$ and TiO2 nanoparticles. Filler loading concentration and mixing ratio, which is the ratio between $A1_{2}O_{3}$ and TiO2 nanoparticle content is optimized by analyzing the simulation results. AC breakdown strength of the prepared samples were measured. It is found that, MPNF sample having a filler loading concentration of 0.1weight percentage (wt%) and mixing ratio of 9:1 shows highest AC breakdown strength. This sample shows an enhancement of 38.4%, 15.86%, and 17.41%, w.r.t pure oil, $A1_{2}O_{3}$ and TiO2 NFs having same filler loading concentration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信