{"title":"音频信号处理的非均匀过采样滤波器组","authors":"Z. Cvetković, J. Johnston","doi":"10.1109/TSA.2003.814412","DOIUrl":null,"url":null,"abstract":"In emerging audio technology applications, there is a need for decompositions of audio signals into oversampled subband components with time-frequency resolution which mimics that of the cochlear filter bank and with high aliasing attenuation in each of the subbands independently, rather than aliasing cancellation properties. We present a design of nearly perfect reconstruction nonuniform oversampled filter banks which implement signal decompositions of this kind.","PeriodicalId":13155,"journal":{"name":"IEEE Trans. Speech Audio Process.","volume":"110 1","pages":"393-399"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"Nonuniform oversampled filter banks for audio signal processing\",\"authors\":\"Z. Cvetković, J. Johnston\",\"doi\":\"10.1109/TSA.2003.814412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In emerging audio technology applications, there is a need for decompositions of audio signals into oversampled subband components with time-frequency resolution which mimics that of the cochlear filter bank and with high aliasing attenuation in each of the subbands independently, rather than aliasing cancellation properties. We present a design of nearly perfect reconstruction nonuniform oversampled filter banks which implement signal decompositions of this kind.\",\"PeriodicalId\":13155,\"journal\":{\"name\":\"IEEE Trans. Speech Audio Process.\",\"volume\":\"110 1\",\"pages\":\"393-399\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Speech Audio Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSA.2003.814412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Speech Audio Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSA.2003.814412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonuniform oversampled filter banks for audio signal processing
In emerging audio technology applications, there is a need for decompositions of audio signals into oversampled subband components with time-frequency resolution which mimics that of the cochlear filter bank and with high aliasing attenuation in each of the subbands independently, rather than aliasing cancellation properties. We present a design of nearly perfect reconstruction nonuniform oversampled filter banks which implement signal decompositions of this kind.