{"title":"四轮全向移动机器人无滑脱运动","authors":"A. Kilin, Y. Karavaev, V. Shestakov","doi":"10.17587/mau.24.403-411","DOIUrl":null,"url":null,"abstract":"The article is devoted to the motion analysis of a highly maneuverable mobile robot with four omniwheels, taking into account the conditions for the appearance of wheel detachment from the surface, and the occurrence of wheel slipping. Within the motion analysis the task of determination support reactions for a mobile robot is considered. To solve this task, the design of a mobile robot is presented in the form of the frame with rods. To disclosure the static indeterminacy of the considered system the forces method is used. Dependences of support reactions from the position of the center mass are obtained. The feature of the considered system is that the obtained dependencies of the support reactions are nonlinear. Based on the obtained dependences of the support reactions, the influence of the position of the center of mass of a mobile robot with four wheels on the occurrence of detachment and slipping of wheels of a mobile robot was considered. Investigation was carried out within the framework of the dry friction model, according to which module of the friction force proportionally depends on the support reaction acting on the wheel from the side of the motion surface. Simulation was carried out, as a result of which the conditions for the position of the center of mass of a mobile robot were determined, in which wheels of a mobile robot do not detach from the motion surface, and there is no wheel slipping.","PeriodicalId":36477,"journal":{"name":"Mekhatronika, Avtomatizatsiya, Upravlenie","volume":"675 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motion of a Four-Wheeled Omnidirectional Mobile Robot without Slipping and Detachment from the Surface\",\"authors\":\"A. Kilin, Y. Karavaev, V. Shestakov\",\"doi\":\"10.17587/mau.24.403-411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article is devoted to the motion analysis of a highly maneuverable mobile robot with four omniwheels, taking into account the conditions for the appearance of wheel detachment from the surface, and the occurrence of wheel slipping. Within the motion analysis the task of determination support reactions for a mobile robot is considered. To solve this task, the design of a mobile robot is presented in the form of the frame with rods. To disclosure the static indeterminacy of the considered system the forces method is used. Dependences of support reactions from the position of the center mass are obtained. The feature of the considered system is that the obtained dependencies of the support reactions are nonlinear. Based on the obtained dependences of the support reactions, the influence of the position of the center of mass of a mobile robot with four wheels on the occurrence of detachment and slipping of wheels of a mobile robot was considered. Investigation was carried out within the framework of the dry friction model, according to which module of the friction force proportionally depends on the support reaction acting on the wheel from the side of the motion surface. Simulation was carried out, as a result of which the conditions for the position of the center of mass of a mobile robot were determined, in which wheels of a mobile robot do not detach from the motion surface, and there is no wheel slipping.\",\"PeriodicalId\":36477,\"journal\":{\"name\":\"Mekhatronika, Avtomatizatsiya, Upravlenie\",\"volume\":\"675 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mekhatronika, Avtomatizatsiya, Upravlenie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17587/mau.24.403-411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mekhatronika, Avtomatizatsiya, Upravlenie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17587/mau.24.403-411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Motion of a Four-Wheeled Omnidirectional Mobile Robot without Slipping and Detachment from the Surface
The article is devoted to the motion analysis of a highly maneuverable mobile robot with four omniwheels, taking into account the conditions for the appearance of wheel detachment from the surface, and the occurrence of wheel slipping. Within the motion analysis the task of determination support reactions for a mobile robot is considered. To solve this task, the design of a mobile robot is presented in the form of the frame with rods. To disclosure the static indeterminacy of the considered system the forces method is used. Dependences of support reactions from the position of the center mass are obtained. The feature of the considered system is that the obtained dependencies of the support reactions are nonlinear. Based on the obtained dependences of the support reactions, the influence of the position of the center of mass of a mobile robot with four wheels on the occurrence of detachment and slipping of wheels of a mobile robot was considered. Investigation was carried out within the framework of the dry friction model, according to which module of the friction force proportionally depends on the support reaction acting on the wheel from the side of the motion surface. Simulation was carried out, as a result of which the conditions for the position of the center of mass of a mobile robot were determined, in which wheels of a mobile robot do not detach from the motion surface, and there is no wheel slipping.