汉文歧管的封面

G. Chelnokov, A. Mednykh
{"title":"汉文歧管的封面","authors":"G. Chelnokov, A. Mednykh","doi":"10.2748/tmj.20210308","DOIUrl":null,"url":null,"abstract":"There are only 10 Euclidean forms, that is flat closed three dimensional manifolds: six are orientable $\\mathcal{G}_1,\\dots,\\mathcal{G}_6$ and four are non-orientable $\\mathcal{B}_1,\\dots,\\mathcal{B}_4$. In the present paper we investigate the manifold $\\mathcal{G}_6$, also known as Hantzsche-Wendt manifold; this is the unique Euclidean $3$-form with finite first homology group $H_1(\\mathcal{G}_6) = \\mathbb{Z}^2_4$. \nThe aim of this paper is to describe all types of $n$-fold coverings over $\\mathcal{G}_{6}$ and calculate the numbers of non-equivalent coverings of each type. We classify subgroups in the fundamental group $\\pi_1(\\mathcal{G}_{6})$ up to isomorphism. Given index $n$, we calculate the numbers of subgroups and the numbers of conjugacy classes of subgroups for each isomorphism type and provide the Dirichlet generating series for the above sequences.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the coverings of Hantzsche-Wendt manifold\",\"authors\":\"G. Chelnokov, A. Mednykh\",\"doi\":\"10.2748/tmj.20210308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are only 10 Euclidean forms, that is flat closed three dimensional manifolds: six are orientable $\\\\mathcal{G}_1,\\\\dots,\\\\mathcal{G}_6$ and four are non-orientable $\\\\mathcal{B}_1,\\\\dots,\\\\mathcal{B}_4$. In the present paper we investigate the manifold $\\\\mathcal{G}_6$, also known as Hantzsche-Wendt manifold; this is the unique Euclidean $3$-form with finite first homology group $H_1(\\\\mathcal{G}_6) = \\\\mathbb{Z}^2_4$. \\nThe aim of this paper is to describe all types of $n$-fold coverings over $\\\\mathcal{G}_{6}$ and calculate the numbers of non-equivalent coverings of each type. We classify subgroups in the fundamental group $\\\\pi_1(\\\\mathcal{G}_{6})$ up to isomorphism. Given index $n$, we calculate the numbers of subgroups and the numbers of conjugacy classes of subgroups for each isomorphism type and provide the Dirichlet generating series for the above sequences.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2748/tmj.20210308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2748/tmj.20210308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

只有10种欧几里得形式,即平坦封闭的三维流形:6种是可定向的$\mathcal{G}_1,\dots,\mathcal{G}_6$ 4种是不可定向的$\mathcal{B}_1,\dots,\mathcal{B}_4$。在本文中,我们研究了流形$\mathcal{G}_6$,也称为Hantzsche-Wendt流形;这是唯一的具有有限第一同调群$H_1(\mathcal{G}_6) = \mathbb{Z}^2_4$的欧几里得$3$ -形式。本文的目的是描述$\mathcal{G}_{6}$上所有类型的$n$ -fold覆盖,并计算每种类型的非等效覆盖的数量。我们将基本群$\pi_1(\mathcal{G}_{6})$中的子群划分到同构。给定索引$n$,我们计算了每个同构类型的子群的个数和子群的共轭类的个数,并给出了上述序列的Dirichlet生成级数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the coverings of Hantzsche-Wendt manifold
There are only 10 Euclidean forms, that is flat closed three dimensional manifolds: six are orientable $\mathcal{G}_1,\dots,\mathcal{G}_6$ and four are non-orientable $\mathcal{B}_1,\dots,\mathcal{B}_4$. In the present paper we investigate the manifold $\mathcal{G}_6$, also known as Hantzsche-Wendt manifold; this is the unique Euclidean $3$-form with finite first homology group $H_1(\mathcal{G}_6) = \mathbb{Z}^2_4$. The aim of this paper is to describe all types of $n$-fold coverings over $\mathcal{G}_{6}$ and calculate the numbers of non-equivalent coverings of each type. We classify subgroups in the fundamental group $\pi_1(\mathcal{G}_{6})$ up to isomorphism. Given index $n$, we calculate the numbers of subgroups and the numbers of conjugacy classes of subgroups for each isomorphism type and provide the Dirichlet generating series for the above sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信