基于加权模型的土匪假设转移

Steven Bilaj, Sofien Dhouib, S. Maghsudi
{"title":"基于加权模型的土匪假设转移","authors":"Steven Bilaj, Sofien Dhouib, S. Maghsudi","doi":"10.48550/arXiv.2211.07387","DOIUrl":null,"url":null,"abstract":"We consider the problem of contextual multi-armed bandits in the setting of hypothesis transfer learning. That is, we assume having access to a previously learned model on an unobserved set of contexts, and we leverage it in order to accelerate exploration on a new bandit problem. Our transfer strategy is based on a re-weighting scheme for which we show a reduction in the regret over the classic Linear UCB when transfer is desired, while recovering the classic regret rate when the two tasks are unrelated. We further extend this method to an arbitrary amount of source models, where the algorithm decides which model is preferred at each time step. Additionally we discuss an approach where a dynamic convex combination of source models is given in terms of a biased regularization term in the classic LinUCB algorithm. The algorithms and the theoretical analysis of our proposed methods substantiated by empirical evaluations on simulated and real-world data.","PeriodicalId":74091,"journal":{"name":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","volume":"664 1","pages":"284-299"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hypothesis Transfer in Bandits by Weighted Models\",\"authors\":\"Steven Bilaj, Sofien Dhouib, S. Maghsudi\",\"doi\":\"10.48550/arXiv.2211.07387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of contextual multi-armed bandits in the setting of hypothesis transfer learning. That is, we assume having access to a previously learned model on an unobserved set of contexts, and we leverage it in order to accelerate exploration on a new bandit problem. Our transfer strategy is based on a re-weighting scheme for which we show a reduction in the regret over the classic Linear UCB when transfer is desired, while recovering the classic regret rate when the two tasks are unrelated. We further extend this method to an arbitrary amount of source models, where the algorithm decides which model is preferred at each time step. Additionally we discuss an approach where a dynamic convex combination of source models is given in terms of a biased regularization term in the classic LinUCB algorithm. The algorithms and the theoretical analysis of our proposed methods substantiated by empirical evaluations on simulated and real-world data.\",\"PeriodicalId\":74091,\"journal\":{\"name\":\"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)\",\"volume\":\"664 1\",\"pages\":\"284-299\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2211.07387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.07387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在假设迁移学习的背景下,我们考虑了情境多手强盗问题。也就是说,我们假设在未观察到的一组上下文中可以访问先前学习过的模型,并且我们利用它来加速对新土匪问题的探索。我们的迁移策略基于一个重新加权方案,当需要迁移时,我们展示了比经典线性UCB更少的遗憾,而当两个任务无关时,我们恢复了经典遗憾率。我们进一步将该方法扩展到任意数量的源模型,其中算法决定在每个时间步选择哪个模型。此外,我们还讨论了在经典LinUCB算法中根据有偏正则化项给出源模型的动态凸组合的方法。我们提出的方法的算法和理论分析得到了模拟和现实世界数据的实证评估的证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypothesis Transfer in Bandits by Weighted Models
We consider the problem of contextual multi-armed bandits in the setting of hypothesis transfer learning. That is, we assume having access to a previously learned model on an unobserved set of contexts, and we leverage it in order to accelerate exploration on a new bandit problem. Our transfer strategy is based on a re-weighting scheme for which we show a reduction in the regret over the classic Linear UCB when transfer is desired, while recovering the classic regret rate when the two tasks are unrelated. We further extend this method to an arbitrary amount of source models, where the algorithm decides which model is preferred at each time step. Additionally we discuss an approach where a dynamic convex combination of source models is given in terms of a biased regularization term in the classic LinUCB algorithm. The algorithms and the theoretical analysis of our proposed methods substantiated by empirical evaluations on simulated and real-world data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信