Noetherian域的反积分扩展的若干关系

Kiyoshi Baba, S. Oda, KEN-ICHI Yoshida
{"title":"Noetherian域的反积分扩展的若干关系","authors":"Kiyoshi Baba, S. Oda, KEN-ICHI Yoshida","doi":"10.5036/MJIU.32.63","DOIUrl":null,"url":null,"abstract":"Let R be a Noetherian domain with quotient field K and let α be an anti-integral element of degree d over R. Let β be an elemen of R(α) (resp. R(α,α-1)) such that β is an anti-integral element over R and that R(α) (resp. R(α,α-1)) is integral over R(β)). We shall investigate some properties descending from R(α) (resp. R(α,α-1)) to R(β), i. e., flatness and faithful flatness, and study the ideals J(α), J(β), J(α) and J(β). Let R be a Noetherian domain and R(X) a polynomial ring. Let α be an element of an algebraic extension field L of the quotient field K of R and let π: R(X) →R(α) be the R-algebra homomorphism, sending X to α. Let ψα(X) be the monic minimal polynomial of α over K with deg ψα(X)=d and write","PeriodicalId":18362,"journal":{"name":"Mathematical Journal of Ibaraki University","volume":"128 1","pages":"63-67"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Relationship between Anti-Integral Extensions of Noetherian Domains\",\"authors\":\"Kiyoshi Baba, S. Oda, KEN-ICHI Yoshida\",\"doi\":\"10.5036/MJIU.32.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let R be a Noetherian domain with quotient field K and let α be an anti-integral element of degree d over R. Let β be an elemen of R(α) (resp. R(α,α-1)) such that β is an anti-integral element over R and that R(α) (resp. R(α,α-1)) is integral over R(β)). We shall investigate some properties descending from R(α) (resp. R(α,α-1)) to R(β), i. e., flatness and faithful flatness, and study the ideals J(α), J(β), J(α) and J(β). Let R be a Noetherian domain and R(X) a polynomial ring. Let α be an element of an algebraic extension field L of the quotient field K of R and let π: R(X) →R(α) be the R-algebra homomorphism, sending X to α. Let ψα(X) be the monic minimal polynomial of α over K with deg ψα(X)=d and write\",\"PeriodicalId\":18362,\"journal\":{\"name\":\"Mathematical Journal of Ibaraki University\",\"volume\":\"128 1\",\"pages\":\"63-67\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Journal of Ibaraki University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5036/MJIU.32.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Journal of Ibaraki University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/MJIU.32.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设R是一个具有商域K的noether定义域,设α是一个d / R次的反积分元素,设β是R(α)的一个元素。R(α,α-1))使得β是R上的反积分元素并且R(α) (p。R(α,α-1)是对R(β)的积分。我们将研究一些从R(α) (p)降下来的性质。R(α,α-1))到R(β),即平面度和忠实平面度,并研究理想J(α), J(β), J(α)和J(β)。设R是一个诺瑟域,R(X)是一个多项式环。设α是R的商域K的代数扩展域L的一个元素,设π: R(X)→R(α)是R-代数同态,使X到α。设ψα(X)是α / K的最小多项式,且deg ψα(X)=d,并写出
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Relationship between Anti-Integral Extensions of Noetherian Domains
Let R be a Noetherian domain with quotient field K and let α be an anti-integral element of degree d over R. Let β be an elemen of R(α) (resp. R(α,α-1)) such that β is an anti-integral element over R and that R(α) (resp. R(α,α-1)) is integral over R(β)). We shall investigate some properties descending from R(α) (resp. R(α,α-1)) to R(β), i. e., flatness and faithful flatness, and study the ideals J(α), J(β), J(α) and J(β). Let R be a Noetherian domain and R(X) a polynomial ring. Let α be an element of an algebraic extension field L of the quotient field K of R and let π: R(X) →R(α) be the R-algebra homomorphism, sending X to α. Let ψα(X) be the monic minimal polynomial of α over K with deg ψα(X)=d and write
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信