{"title":"非定常切变主流阵风风洞设计","authors":"Y. Nishio, Ryotaro Miyazaki, T. Ogawa","doi":"10.1115/fedsm2021-65946","DOIUrl":null,"url":null,"abstract":"\n Micro air vehicles (MAVs) have been developed for many fields. The MAVs usually receive strong impact from a velocity change in time or space, and facilities for aerodynamic experiments of MAVs under a gusty environment have been required. The present study has developed a gust wind tunnel to generate unsteady and non-uniform flows. We developed a small wind tunnel with eight multi-fans and a shutter mechanism at the upstream of the test section. We controlled the outputs of the fans independently and obtained a linear shear layer with an error of 5 percent. The velocity gradient of the shear layer was from 5 to 8 s−1. The shutter mechanisms provided a longitudinal gust with the velocity change from 2 m/s to 10 m/s within 0.3 seconds.","PeriodicalId":23636,"journal":{"name":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Gust Wind Tunnel With Unsteady and Shear Main-Flows\",\"authors\":\"Y. Nishio, Ryotaro Miyazaki, T. Ogawa\",\"doi\":\"10.1115/fedsm2021-65946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Micro air vehicles (MAVs) have been developed for many fields. The MAVs usually receive strong impact from a velocity change in time or space, and facilities for aerodynamic experiments of MAVs under a gusty environment have been required. The present study has developed a gust wind tunnel to generate unsteady and non-uniform flows. We developed a small wind tunnel with eight multi-fans and a shutter mechanism at the upstream of the test section. We controlled the outputs of the fans independently and obtained a linear shear layer with an error of 5 percent. The velocity gradient of the shear layer was from 5 to 8 s−1. The shutter mechanisms provided a longitudinal gust with the velocity change from 2 m/s to 10 m/s within 0.3 seconds.\",\"PeriodicalId\":23636,\"journal\":{\"name\":\"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/fedsm2021-65946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2021-65946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of Gust Wind Tunnel With Unsteady and Shear Main-Flows
Micro air vehicles (MAVs) have been developed for many fields. The MAVs usually receive strong impact from a velocity change in time or space, and facilities for aerodynamic experiments of MAVs under a gusty environment have been required. The present study has developed a gust wind tunnel to generate unsteady and non-uniform flows. We developed a small wind tunnel with eight multi-fans and a shutter mechanism at the upstream of the test section. We controlled the outputs of the fans independently and obtained a linear shear layer with an error of 5 percent. The velocity gradient of the shear layer was from 5 to 8 s−1. The shutter mechanisms provided a longitudinal gust with the velocity change from 2 m/s to 10 m/s within 0.3 seconds.