{"title":"肠道生态失调和非酒精性脂肪肝","authors":"T. Auguet, Laia Bertran, Jessica Binetti","doi":"10.5772/INTECHOPEN.92972","DOIUrl":null,"url":null,"abstract":"Non-alcoholic fatty liver disease (NAFLD) affects 20–30% of the population, with an increased prevalence in industrialized regions. Some patients with NAFLD develop an inflammatory condition termed non-alcoholic steatohepatitis (NASH) that is characterized by hepatocellular injury, innate immune cell-mediated inflammation, and progressive liver fibrosis. In clinical practice, abdominal imaging, which reveals hepatic steatosis, is sufficient for NAFLD diagnosis if other diseases have been rejected. However, a liver biopsy is needed to differentiate NASH from simple steatosis. Therapeutic strategies used to treat obesity and metabolic syndrome improve NAFLD, but there is no specific treatment effective for NASH. The gut microbiota (GM) is composed of millions of microorganisms. Changes in the GM have a significant impact on host health. Intestinal dysbiosis is an imbalance in the GM that can induce increased permeability of the epithelial barrier, with migration of GM-derived mediators through portal vein to the liver. These mediators, such as lipopolysaccharides, short-chain fatty acids, bile acids (BAs), choline, and endogenous ethanol, seem to be involved in NAFLD pathogenesis. Given this evidence, it would be interesting to consider GM-derived mediator determination through omics techniques as a noninvasive diagnostic tool for NASH and to focus research on microbiota modulation as a possible treatment for NASH.","PeriodicalId":37790,"journal":{"name":"Human Microbiome Journal","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Intestinal Dysbiosis and Non-Alcoholic Fatty Liver Disease\",\"authors\":\"T. Auguet, Laia Bertran, Jessica Binetti\",\"doi\":\"10.5772/INTECHOPEN.92972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-alcoholic fatty liver disease (NAFLD) affects 20–30% of the population, with an increased prevalence in industrialized regions. Some patients with NAFLD develop an inflammatory condition termed non-alcoholic steatohepatitis (NASH) that is characterized by hepatocellular injury, innate immune cell-mediated inflammation, and progressive liver fibrosis. In clinical practice, abdominal imaging, which reveals hepatic steatosis, is sufficient for NAFLD diagnosis if other diseases have been rejected. However, a liver biopsy is needed to differentiate NASH from simple steatosis. Therapeutic strategies used to treat obesity and metabolic syndrome improve NAFLD, but there is no specific treatment effective for NASH. The gut microbiota (GM) is composed of millions of microorganisms. Changes in the GM have a significant impact on host health. Intestinal dysbiosis is an imbalance in the GM that can induce increased permeability of the epithelial barrier, with migration of GM-derived mediators through portal vein to the liver. These mediators, such as lipopolysaccharides, short-chain fatty acids, bile acids (BAs), choline, and endogenous ethanol, seem to be involved in NAFLD pathogenesis. Given this evidence, it would be interesting to consider GM-derived mediator determination through omics techniques as a noninvasive diagnostic tool for NASH and to focus research on microbiota modulation as a possible treatment for NASH.\",\"PeriodicalId\":37790,\"journal\":{\"name\":\"Human Microbiome Journal\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Microbiome Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.92972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Microbiome Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.92972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Intestinal Dysbiosis and Non-Alcoholic Fatty Liver Disease
Non-alcoholic fatty liver disease (NAFLD) affects 20–30% of the population, with an increased prevalence in industrialized regions. Some patients with NAFLD develop an inflammatory condition termed non-alcoholic steatohepatitis (NASH) that is characterized by hepatocellular injury, innate immune cell-mediated inflammation, and progressive liver fibrosis. In clinical practice, abdominal imaging, which reveals hepatic steatosis, is sufficient for NAFLD diagnosis if other diseases have been rejected. However, a liver biopsy is needed to differentiate NASH from simple steatosis. Therapeutic strategies used to treat obesity and metabolic syndrome improve NAFLD, but there is no specific treatment effective for NASH. The gut microbiota (GM) is composed of millions of microorganisms. Changes in the GM have a significant impact on host health. Intestinal dysbiosis is an imbalance in the GM that can induce increased permeability of the epithelial barrier, with migration of GM-derived mediators through portal vein to the liver. These mediators, such as lipopolysaccharides, short-chain fatty acids, bile acids (BAs), choline, and endogenous ethanol, seem to be involved in NAFLD pathogenesis. Given this evidence, it would be interesting to consider GM-derived mediator determination through omics techniques as a noninvasive diagnostic tool for NASH and to focus research on microbiota modulation as a possible treatment for NASH.
期刊介绍:
The innumerable microbes living in and on our bodies are known to affect human wellbeing, but our knowledge of their role is still at the very early stages of understanding. Human Microbiome is a new open access journal dedicated to research on the impact of the microbiome on human health and disease. The journal will publish original research, reviews, comments, human microbe descriptions and genome, and letters. Topics covered will include: the repertoire of human-associated microbes, therapeutic intervention, pathophysiology, experimental models, physiological, geographical, and pathological changes, and technical reports; genomic, metabolomic, transcriptomic, and culturomic approaches are welcome.