离散Cesàro空间的对偶Banach空间诱导的fr和(LB)序列空间

Pub Date : 2021-05-01 DOI:10.36045/J.BBMS.200203
J. Bonet, W. Ricker
{"title":"离散Cesàro空间的对偶Banach空间诱导的fr<s:1>和(LB)序列空间","authors":"J. Bonet, W. Ricker","doi":"10.36045/J.BBMS.200203","DOIUrl":null,"url":null,"abstract":"The Fréchet (resp., (LB)-) sequence spaces ces(p+) := ⋂ r>p ces(r), 1 ≤ p < ∞ (resp. ces(p-) := ⋃ 1<r<p ces(r), 1 < p ≤ ∞), are known to be very different to the classical sequence spaces lp+ (resp., lp). Both of these classes of non-normable spaces ces(p+), ces(p-) are defined via the family of reflexive Banach sequence spaces ces(p), 1 < p < ∞. The dual Banach spaces d(q), 1 < q < ∞, of the discrete Cesàro spaces ces(p), 1 < p < ∞, were studied by G. Bennett, A. Jagers and others. Our aim is to investigate in detail the corresponding sequence spaces d(p+) and d(p-), which have not been considered before. Some of their properties have similarities with those of ces(p+), ces(p-) but, they also exhibit differences. For instance, ces(p+) is isomorphic to a power series Fréchet space of order 1 whereas d(p+) is isomorphic to such a space of infinite order. Every space ces(p+), ces(p-) admits an absolute basis but, none of the spaces d(p+), d(p-) have any absolute basis.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fréchet and (LB) sequence spaces induced by dual Banach spaces of discrete Cesàro spaces\",\"authors\":\"J. Bonet, W. Ricker\",\"doi\":\"10.36045/J.BBMS.200203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Fréchet (resp., (LB)-) sequence spaces ces(p+) := ⋂ r>p ces(r), 1 ≤ p < ∞ (resp. ces(p-) := ⋃ 1<r<p ces(r), 1 < p ≤ ∞), are known to be very different to the classical sequence spaces lp+ (resp., lp). Both of these classes of non-normable spaces ces(p+), ces(p-) are defined via the family of reflexive Banach sequence spaces ces(p), 1 < p < ∞. The dual Banach spaces d(q), 1 < q < ∞, of the discrete Cesàro spaces ces(p), 1 < p < ∞, were studied by G. Bennett, A. Jagers and others. Our aim is to investigate in detail the corresponding sequence spaces d(p+) and d(p-), which have not been considered before. Some of their properties have similarities with those of ces(p+), ces(p-) but, they also exhibit differences. For instance, ces(p+) is isomorphic to a power series Fréchet space of order 1 whereas d(p+) is isomorphic to such a space of infinite order. Every space ces(p+), ces(p-) admits an absolute basis but, none of the spaces d(p+), d(p-) have any absolute basis.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.36045/J.BBMS.200203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.36045/J.BBMS.200203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

法国人(代表)。, (LB)-)序列空间ces(p+):= r>p ces(r), 1≤p <∞(resp;Ces (p-):= 1本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Fréchet and (LB) sequence spaces induced by dual Banach spaces of discrete Cesàro spaces
The Fréchet (resp., (LB)-) sequence spaces ces(p+) := ⋂ r>p ces(r), 1 ≤ p < ∞ (resp. ces(p-) := ⋃ 1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信