兔金属硫蛋白的扫描隧道显微镜研究

PhysChemComm Pub Date : 1998-01-01 DOI:10.1039/A806057F
Jason J. Davis, H. Hill, A. Kurz, C. Jacob, W. Maret, B. Vallée
{"title":"兔金属硫蛋白的扫描隧道显微镜研究","authors":"Jason J. Davis, H. Hill, A. Kurz, C. Jacob, W. Maret, B. Vallée","doi":"10.1039/A806057F","DOIUrl":null,"url":null,"abstract":"The application of scanning probe methods to the high-resolution imaging of biological structure has been developing rapidly during the past few years. In contrast to diffraction and electron microscopy methods, imaging is direct and can be carried out under fluid. Scanning Tunneling Microscopy (STM) allows a resolution of electronic as well as topographic structure, and we are accordingly interested in its application to the high resolution imaging of metalloproteins. PARAGRAPH MARK REMOVED. Metallothionein has been imaged under buffered solution by in situ STM. The dumbbell morphology has been resolved and the metal centers appear to give rise to enhanced tunneling current.","PeriodicalId":20106,"journal":{"name":"PhysChemComm","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A scanning tunneling microscopy study of rabbit metallothionein\",\"authors\":\"Jason J. Davis, H. Hill, A. Kurz, C. Jacob, W. Maret, B. Vallée\",\"doi\":\"10.1039/A806057F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of scanning probe methods to the high-resolution imaging of biological structure has been developing rapidly during the past few years. In contrast to diffraction and electron microscopy methods, imaging is direct and can be carried out under fluid. Scanning Tunneling Microscopy (STM) allows a resolution of electronic as well as topographic structure, and we are accordingly interested in its application to the high resolution imaging of metalloproteins. PARAGRAPH MARK REMOVED. Metallothionein has been imaged under buffered solution by in situ STM. The dumbbell morphology has been resolved and the metal centers appear to give rise to enhanced tunneling current.\",\"PeriodicalId\":20106,\"journal\":{\"name\":\"PhysChemComm\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PhysChemComm\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/A806057F\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PhysChemComm","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/A806057F","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

近年来,扫描探针技术在生物结构高分辨率成像中的应用得到了迅速发展。与衍射和电子显微镜方法相比,成像是直接的,可以在流体下进行。扫描隧道显微镜(STM)允许电子和地形结构的分辨率,因此我们对其在金属蛋白的高分辨率成像中的应用感兴趣。删除段落标记。用原位STM在缓冲溶液下对金属硫蛋白进行了成像。哑铃形态得到了解决,金属中心产生了增强的隧道电流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A scanning tunneling microscopy study of rabbit metallothionein
The application of scanning probe methods to the high-resolution imaging of biological structure has been developing rapidly during the past few years. In contrast to diffraction and electron microscopy methods, imaging is direct and can be carried out under fluid. Scanning Tunneling Microscopy (STM) allows a resolution of electronic as well as topographic structure, and we are accordingly interested in its application to the high resolution imaging of metalloproteins. PARAGRAPH MARK REMOVED. Metallothionein has been imaged under buffered solution by in situ STM. The dumbbell morphology has been resolved and the metal centers appear to give rise to enhanced tunneling current.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信