半线性双曲方程近似混合问题的差分电路解系数稳定性

П. П. Матус, С. В. Лемешевский
{"title":"半线性双曲方程近似混合问题的差分电路解系数稳定性","authors":"П. П. Матус, С. В. Лемешевский","doi":"10.29235/1561-8323-2020-64-2-135-143","DOIUrl":null,"url":null,"abstract":"The stability with respect to coefficients of solution of a difference scheme approximating the initial boundary-value problem for the one-dimensional semi-linear hyperbolic equation is studied. The estimates of the solutions of both differential and difference problems are obtained. In the domain of existence of the solution, the estimates for perturbation of the solution of a difference scheme with respect to perturbation of the coefficients of the equation are obtained. These estimates are consistent with the estimates for the differential problem. In all cases, the method of energy inequalities, the Bihari inequality and its mesh analogue are used.","PeriodicalId":11227,"journal":{"name":"Doklady Akademii nauk","volume":"50 1","pages":"135-143"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Коэффициентная устойчивость решений разностных схем, аппроксимирующих смешанные задачи для полулинейных гиперболических уравнений\",\"authors\":\"П. П. Матус, С. В. Лемешевский\",\"doi\":\"10.29235/1561-8323-2020-64-2-135-143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stability with respect to coefficients of solution of a difference scheme approximating the initial boundary-value problem for the one-dimensional semi-linear hyperbolic equation is studied. The estimates of the solutions of both differential and difference problems are obtained. In the domain of existence of the solution, the estimates for perturbation of the solution of a difference scheme with respect to perturbation of the coefficients of the equation are obtained. These estimates are consistent with the estimates for the differential problem. In all cases, the method of energy inequalities, the Bihari inequality and its mesh analogue are used.\",\"PeriodicalId\":11227,\"journal\":{\"name\":\"Doklady Akademii nauk\",\"volume\":\"50 1\",\"pages\":\"135-143\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Akademii nauk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29235/1561-8323-2020-64-2-135-143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Akademii nauk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-8323-2020-64-2-135-143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类近似一维半线性双曲型方程初边值问题的差分格式解的系数稳定性。得到了微分和差分问题解的估计。在解的存在域内,得到了差分格式解的摄动对方程系数摄动的估计。这些估计与微分问题的估计是一致的。在所有情况下,都使用了能量不等式、Bihari不等式及其网格模拟方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Коэффициентная устойчивость решений разностных схем, аппроксимирующих смешанные задачи для полулинейных гиперболических уравнений
The stability with respect to coefficients of solution of a difference scheme approximating the initial boundary-value problem for the one-dimensional semi-linear hyperbolic equation is studied. The estimates of the solutions of both differential and difference problems are obtained. In the domain of existence of the solution, the estimates for perturbation of the solution of a difference scheme with respect to perturbation of the coefficients of the equation are obtained. These estimates are consistent with the estimates for the differential problem. In all cases, the method of energy inequalities, the Bihari inequality and its mesh analogue are used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信