{"title":"评估粘土的摩擦角:压锥试验与阿特伯格极限","authors":"Z. Ouyang, P. Mayne","doi":"10.1680/jgeen.22.00135","DOIUrl":null,"url":null,"abstract":"A limit plasticity solution for evaluating the effective stress friction angle in clays from piezocone tests was assessed and compared with the popular notion of using laboratory Atterberg limits on remoulded specimens. The results showed that the in-situ piezocone- based method provided a far more accurate and robust interpretation of the friction angle values of 155 separate clays than empirical correlations with plasticity index when compared with laboratory benchmark values obtained from triaxial compression tests. For illustration, the piezocone-based method was shown successfully to capture the effective stress parameter of four clays with friction angles of 20−37°: normally consolidated kaolin clay in chamber tests, natural soft clay deposit located at Bothkennar UK, Troll offshore clay in the North Sea and soft plastic lacustrine deposits in Bogota, Colombia.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating friction angles for clays: piezocone tests versus Atterberg limits\",\"authors\":\"Z. Ouyang, P. Mayne\",\"doi\":\"10.1680/jgeen.22.00135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A limit plasticity solution for evaluating the effective stress friction angle in clays from piezocone tests was assessed and compared with the popular notion of using laboratory Atterberg limits on remoulded specimens. The results showed that the in-situ piezocone- based method provided a far more accurate and robust interpretation of the friction angle values of 155 separate clays than empirical correlations with plasticity index when compared with laboratory benchmark values obtained from triaxial compression tests. For illustration, the piezocone-based method was shown successfully to capture the effective stress parameter of four clays with friction angles of 20−37°: normally consolidated kaolin clay in chamber tests, natural soft clay deposit located at Bothkennar UK, Troll offshore clay in the North Sea and soft plastic lacustrine deposits in Bogota, Colombia.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jgeen.22.00135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jgeen.22.00135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Evaluating friction angles for clays: piezocone tests versus Atterberg limits
A limit plasticity solution for evaluating the effective stress friction angle in clays from piezocone tests was assessed and compared with the popular notion of using laboratory Atterberg limits on remoulded specimens. The results showed that the in-situ piezocone- based method provided a far more accurate and robust interpretation of the friction angle values of 155 separate clays than empirical correlations with plasticity index when compared with laboratory benchmark values obtained from triaxial compression tests. For illustration, the piezocone-based method was shown successfully to capture the effective stress parameter of four clays with friction angles of 20−37°: normally consolidated kaolin clay in chamber tests, natural soft clay deposit located at Bothkennar UK, Troll offshore clay in the North Sea and soft plastic lacustrine deposits in Bogota, Colombia.