{"title":"用群体遗传学方法研究水螅对氟啶酮的抗性","authors":"L. Gettys, R. León","doi":"10.3391/AI.2021.16.1.03","DOIUrl":null,"url":null,"abstract":"Fluridone-resistant hydrilla was first suspected in Florida in 1999 and was confirmed using molecular genetics techniques in 2003. Although the vast majority of species that evolve resistance to herbicides or other stressors do so through the genetic mutations that occur during sexual reproduction, all hydrilla in Florida is of the dioecious pistillate (“female”) biotype and all reproduction and spread is via vegetative means. The Hardy-Weinberg principle of constant allele frequencies (i.e., p + q = 1), used to predict allelic frequency shifts within populations due to selection, is based on a number of assumptions that are violated by species that reproduce asexually. In this paper, we address the assumptions of the model in the context of the clonally propagated species hydrilla and compare theoretical model predictions to the likely timeline of actual events that occurred in many bodies of water in Florida. The generational shifts in within-population allele frequencies from almost exclusively fluridone-susceptible to almost exclusively fluridoneresistant track well with the actual development of fluridone-resistant populations of hydrilla in Florida when considering fitness differences among fluridone resistance alleles after fluridone treatments. The present study illustrates how the Hardy-Weinberg principle of constant allele frequencies can be used as an exploratory tool to model resistance evolution in asexually reproducing species such as hydrilla.","PeriodicalId":8119,"journal":{"name":"Aquatic Invasions","volume":"265 1","pages":"28-42"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A population genetics approach for the study of fluridone resistance in hydrilla\",\"authors\":\"L. Gettys, R. León\",\"doi\":\"10.3391/AI.2021.16.1.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fluridone-resistant hydrilla was first suspected in Florida in 1999 and was confirmed using molecular genetics techniques in 2003. Although the vast majority of species that evolve resistance to herbicides or other stressors do so through the genetic mutations that occur during sexual reproduction, all hydrilla in Florida is of the dioecious pistillate (“female”) biotype and all reproduction and spread is via vegetative means. The Hardy-Weinberg principle of constant allele frequencies (i.e., p + q = 1), used to predict allelic frequency shifts within populations due to selection, is based on a number of assumptions that are violated by species that reproduce asexually. In this paper, we address the assumptions of the model in the context of the clonally propagated species hydrilla and compare theoretical model predictions to the likely timeline of actual events that occurred in many bodies of water in Florida. The generational shifts in within-population allele frequencies from almost exclusively fluridone-susceptible to almost exclusively fluridoneresistant track well with the actual development of fluridone-resistant populations of hydrilla in Florida when considering fitness differences among fluridone resistance alleles after fluridone treatments. The present study illustrates how the Hardy-Weinberg principle of constant allele frequencies can be used as an exploratory tool to model resistance evolution in asexually reproducing species such as hydrilla.\",\"PeriodicalId\":8119,\"journal\":{\"name\":\"Aquatic Invasions\",\"volume\":\"265 1\",\"pages\":\"28-42\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Invasions\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3391/AI.2021.16.1.03\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Invasions","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3391/AI.2021.16.1.03","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
A population genetics approach for the study of fluridone resistance in hydrilla
Fluridone-resistant hydrilla was first suspected in Florida in 1999 and was confirmed using molecular genetics techniques in 2003. Although the vast majority of species that evolve resistance to herbicides or other stressors do so through the genetic mutations that occur during sexual reproduction, all hydrilla in Florida is of the dioecious pistillate (“female”) biotype and all reproduction and spread is via vegetative means. The Hardy-Weinberg principle of constant allele frequencies (i.e., p + q = 1), used to predict allelic frequency shifts within populations due to selection, is based on a number of assumptions that are violated by species that reproduce asexually. In this paper, we address the assumptions of the model in the context of the clonally propagated species hydrilla and compare theoretical model predictions to the likely timeline of actual events that occurred in many bodies of water in Florida. The generational shifts in within-population allele frequencies from almost exclusively fluridone-susceptible to almost exclusively fluridoneresistant track well with the actual development of fluridone-resistant populations of hydrilla in Florida when considering fitness differences among fluridone resistance alleles after fluridone treatments. The present study illustrates how the Hardy-Weinberg principle of constant allele frequencies can be used as an exploratory tool to model resistance evolution in asexually reproducing species such as hydrilla.
期刊介绍:
Aquatic Invasions is an open access, peer-reviewed international journal focusing on academic research of biological invasions in both inland and coastal water ecosystems from around the world.
It was established in 2006 as initiative of the International Society of Limnology (SIL) Working Group on Aquatic Invasive Species (WGAIS) with start-up funding from the European Commission Sixth Framework Programme for Research and Technological Development Integrated Project ALARM.
Aquatic Invasions is an official journal of International Association for Open Knowledge on Invasive Alien Species (INVASIVESNET).
Aquatic Invasions provides a forum for professionals involved in research of aquatic non-native species, including a focus on the following:
• Patterns of non-native species dispersal, including range extensions with global change
• Trends in new introductions and establishment of non-native species
• Population dynamics of non-native species
• Ecological and evolutionary impacts of non-native species
• Behaviour of invasive and associated native species in invaded areas
• Prediction of new invasions
• Advances in non-native species identification and taxonomy