Youngkyu Hwang, Min Ku Kim, Ze Zhao, Bongjoong Kim, Taehoo Chang, Tengfei Fan, Mohammed Shahrudin Bin Ibrahim, Subra Suresh, Chi Hwan Lee, Nam‐Joon Cho
{"title":"柔性绿色电子器件的植物基衬底材料","authors":"Youngkyu Hwang, Min Ku Kim, Ze Zhao, Bongjoong Kim, Taehoo Chang, Tengfei Fan, Mohammed Shahrudin Bin Ibrahim, Subra Suresh, Chi Hwan Lee, Nam‐Joon Cho","doi":"10.1002/admt.202200446","DOIUrl":null,"url":null,"abstract":"With the increasing use of soft and flexible electronics, there is a growing need to develop substrate materials that mitigate potential environmental risks associated with non‐degradable electronics waste from synthetic substrate materials. To address this issue, the authors develop a novel, 2D plant‐based substrate termed “sporosubstrate”, which is made of non‐allergenic natural pollen. The pollen particle has a double‐layered architecture with an ultra‐tough sporopollenin exine, and a soft cellulose intine is engineered through an eco‐friendly process. In this manner, a readily available, economical, biodegradable, and biocompatible microgel can be prepared. This microgel can be used to create a variety of flexible shapes with customized mechanical, geometrical, electronic, and functional properties and performance characteristics such as thermal, chemical, and mechanical stability and optical transparency. Moreover, the authors demonstrate here different applications of the flexible natural substrate made of pollen microgel for use in electronic devices for health monitoring and wearable wireless heating. The results of this work point to opportunities for the development of a new class of flexible green electronics based on plant‐based materials in applications such as wearable sensors, implantable devices, and soft robotics.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"85 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plant‐Based Substrate Materials for Flexible Green Electronics\",\"authors\":\"Youngkyu Hwang, Min Ku Kim, Ze Zhao, Bongjoong Kim, Taehoo Chang, Tengfei Fan, Mohammed Shahrudin Bin Ibrahim, Subra Suresh, Chi Hwan Lee, Nam‐Joon Cho\",\"doi\":\"10.1002/admt.202200446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing use of soft and flexible electronics, there is a growing need to develop substrate materials that mitigate potential environmental risks associated with non‐degradable electronics waste from synthetic substrate materials. To address this issue, the authors develop a novel, 2D plant‐based substrate termed “sporosubstrate”, which is made of non‐allergenic natural pollen. The pollen particle has a double‐layered architecture with an ultra‐tough sporopollenin exine, and a soft cellulose intine is engineered through an eco‐friendly process. In this manner, a readily available, economical, biodegradable, and biocompatible microgel can be prepared. This microgel can be used to create a variety of flexible shapes with customized mechanical, geometrical, electronic, and functional properties and performance characteristics such as thermal, chemical, and mechanical stability and optical transparency. Moreover, the authors demonstrate here different applications of the flexible natural substrate made of pollen microgel for use in electronic devices for health monitoring and wearable wireless heating. The results of this work point to opportunities for the development of a new class of flexible green electronics based on plant‐based materials in applications such as wearable sensors, implantable devices, and soft robotics.\",\"PeriodicalId\":7200,\"journal\":{\"name\":\"Advanced Materials & Technologies\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials & Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/admt.202200446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202200446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Plant‐Based Substrate Materials for Flexible Green Electronics
With the increasing use of soft and flexible electronics, there is a growing need to develop substrate materials that mitigate potential environmental risks associated with non‐degradable electronics waste from synthetic substrate materials. To address this issue, the authors develop a novel, 2D plant‐based substrate termed “sporosubstrate”, which is made of non‐allergenic natural pollen. The pollen particle has a double‐layered architecture with an ultra‐tough sporopollenin exine, and a soft cellulose intine is engineered through an eco‐friendly process. In this manner, a readily available, economical, biodegradable, and biocompatible microgel can be prepared. This microgel can be used to create a variety of flexible shapes with customized mechanical, geometrical, electronic, and functional properties and performance characteristics such as thermal, chemical, and mechanical stability and optical transparency. Moreover, the authors demonstrate here different applications of the flexible natural substrate made of pollen microgel for use in electronic devices for health monitoring and wearable wireless heating. The results of this work point to opportunities for the development of a new class of flexible green electronics based on plant‐based materials in applications such as wearable sensors, implantable devices, and soft robotics.