阿基米德格上的非平衡模型

F. Lima
{"title":"阿基米德格上的非平衡模型","authors":"F. Lima","doi":"10.2478/s11534-014-0435-1","DOIUrl":null,"url":null,"abstract":"On (4, 6, 12) and (4, 82) Archimedean lattices, the critical properties of the majority-vote model are considered and studied using the Glauber transition rate proposed by Kwak et al. [Kwak et al., Phys. Rev. E, 75, 061110 (2007)] rather than the traditional majority-vote with noise [Oliveira, J. Stat. Phys. 66, 273 (1992)]. We obtain Tc and the critical exponents for this Glauber rate from extensive Monte Carlo studies and finite size scaling. The calculated values of the critical temperatures and Binder cumulant are Tc = 0.651(3) and U4* = 0.612(5), and Tc = 0.667(2) and U4* = 0.613(5), for (4, 6, 12) and (4, 82) lattices respectively, while the exponent (ratios) β/ν, γ/ν and 1/ν are respectively: 0.105(8), 1.48(11) and 1.16(5) for (4, 6, 12); and 0.113(2), 1.60(4) and 0.84(6) for (4, 82) lattices. The usual Ising model and the majority-vote model on previously studied regular lattices or complex networks differ from our new results.","PeriodicalId":50985,"journal":{"name":"Central European Journal of Physics","volume":"27 1","pages":"185-191"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Nonequilibrium model on Archimedean lattices\",\"authors\":\"F. Lima\",\"doi\":\"10.2478/s11534-014-0435-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On (4, 6, 12) and (4, 82) Archimedean lattices, the critical properties of the majority-vote model are considered and studied using the Glauber transition rate proposed by Kwak et al. [Kwak et al., Phys. Rev. E, 75, 061110 (2007)] rather than the traditional majority-vote with noise [Oliveira, J. Stat. Phys. 66, 273 (1992)]. We obtain Tc and the critical exponents for this Glauber rate from extensive Monte Carlo studies and finite size scaling. The calculated values of the critical temperatures and Binder cumulant are Tc = 0.651(3) and U4* = 0.612(5), and Tc = 0.667(2) and U4* = 0.613(5), for (4, 6, 12) and (4, 82) lattices respectively, while the exponent (ratios) β/ν, γ/ν and 1/ν are respectively: 0.105(8), 1.48(11) and 1.16(5) for (4, 6, 12); and 0.113(2), 1.60(4) and 0.84(6) for (4, 82) lattices. The usual Ising model and the majority-vote model on previously studied regular lattices or complex networks differ from our new results.\",\"PeriodicalId\":50985,\"journal\":{\"name\":\"Central European Journal of Physics\",\"volume\":\"27 1\",\"pages\":\"185-191\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11534-014-0435-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11534-014-0435-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在(4,6,12)和(4,82)阿基米德格上,使用Kwak等人提出的Glauber跃迁率考虑并研究了多数投票模型的关键性质。[j].中国生物医学工程学报,2009,31(2):1 - 2。我们从广泛的蒙特卡罗研究和有限尺度缩放中得到了Tc和该格劳伯速率的临界指数。(4、6、12)和(4、82)晶格的临界温度和Binder累积量的计算值分别为Tc = 0.651(3)和U4* = 0.612(5), Tc = 0.667(2)和U4* = 0.613(5),而(4、6、12)晶格的指数(比值)β/ν、γ/ν和1/ν分别为0.105(8)、1.48(11)和1.16(5);(4,82)格分别为0.113(2)、1.60(4)和0.84(6)。通常的伊辛模型和多数投票模型在以前研究的规则格或复杂网络上与我们的新结果不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonequilibrium model on Archimedean lattices
On (4, 6, 12) and (4, 82) Archimedean lattices, the critical properties of the majority-vote model are considered and studied using the Glauber transition rate proposed by Kwak et al. [Kwak et al., Phys. Rev. E, 75, 061110 (2007)] rather than the traditional majority-vote with noise [Oliveira, J. Stat. Phys. 66, 273 (1992)]. We obtain Tc and the critical exponents for this Glauber rate from extensive Monte Carlo studies and finite size scaling. The calculated values of the critical temperatures and Binder cumulant are Tc = 0.651(3) and U4* = 0.612(5), and Tc = 0.667(2) and U4* = 0.613(5), for (4, 6, 12) and (4, 82) lattices respectively, while the exponent (ratios) β/ν, γ/ν and 1/ν are respectively: 0.105(8), 1.48(11) and 1.16(5) for (4, 6, 12); and 0.113(2), 1.60(4) and 0.84(6) for (4, 82) lattices. The usual Ising model and the majority-vote model on previously studied regular lattices or complex networks differ from our new results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Central European Journal of Physics
Central European Journal of Physics 物理-物理:综合
自引率
0.00%
发文量
0
审稿时长
3.3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信