{"title":"扩散方程:非光滑收益函数的局部波动二叉树泛函格式的收敛性","authors":"Julien Baptiste, E. Lépinette","doi":"10.1080/1350486X.2018.1513806","DOIUrl":null,"url":null,"abstract":"ABSTRACT The function solution to the functional scheme derived from the binomial tree financial model with local volatility converges to the solution of a diffusion equation of type as the number of discrete dates . Contrarily to classical numerical methods, in particular finite difference methods, the principle behind the functional scheme is only based on a discretization in time. We establish the uniform convergence in time of the scheme and provide the rate of convergence when the payoff function is not necessarily smooth as in finance. We illustrate the convergence result and compare its performance to the finite difference and finite element methods by numerical examples.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"26 1","pages":"511 - 532"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Diffusion Equations: Convergence of the Functional Scheme Derived from the Binomial Tree with Local Volatility for Non Smooth Payoff Functions\",\"authors\":\"Julien Baptiste, E. Lépinette\",\"doi\":\"10.1080/1350486X.2018.1513806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The function solution to the functional scheme derived from the binomial tree financial model with local volatility converges to the solution of a diffusion equation of type as the number of discrete dates . Contrarily to classical numerical methods, in particular finite difference methods, the principle behind the functional scheme is only based on a discretization in time. We establish the uniform convergence in time of the scheme and provide the rate of convergence when the payoff function is not necessarily smooth as in finance. We illustrate the convergence result and compare its performance to the finite difference and finite element methods by numerical examples.\",\"PeriodicalId\":35818,\"journal\":{\"name\":\"Applied Mathematical Finance\",\"volume\":\"26 1\",\"pages\":\"511 - 532\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1350486X.2018.1513806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2018.1513806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Diffusion Equations: Convergence of the Functional Scheme Derived from the Binomial Tree with Local Volatility for Non Smooth Payoff Functions
ABSTRACT The function solution to the functional scheme derived from the binomial tree financial model with local volatility converges to the solution of a diffusion equation of type as the number of discrete dates . Contrarily to classical numerical methods, in particular finite difference methods, the principle behind the functional scheme is only based on a discretization in time. We establish the uniform convergence in time of the scheme and provide the rate of convergence when the payoff function is not necessarily smooth as in finance. We illustrate the convergence result and compare its performance to the finite difference and finite element methods by numerical examples.
期刊介绍:
The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.