基于地理标记照片的时空情感热点检测

Yi Zhu, S. Newsam
{"title":"基于地理标记照片的时空情感热点检测","authors":"Yi Zhu, S. Newsam","doi":"10.1145/2996913.2996978","DOIUrl":null,"url":null,"abstract":"We perform spatio-temporal analysis of public sentiment using geotagged photo collections. We develop a deep learning-based classifier that predicts the emotion conveyed by an image. This allows us to associate sentiment with place. We perform spatial hotspot detection and show that different emotions have distinct spatial distributions that match expectations. We also perform temporal analysis using the capture time of the photos. Our spatio-temporal hotspot detection correctly identifies emerging concentrations of specific emotions and year-by-year analyses of select locations show there are strong temporal correlations between the predicted emotions and known events.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Spatio-temporal sentiment hotspot detection using geotagged photos\",\"authors\":\"Yi Zhu, S. Newsam\",\"doi\":\"10.1145/2996913.2996978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We perform spatio-temporal analysis of public sentiment using geotagged photo collections. We develop a deep learning-based classifier that predicts the emotion conveyed by an image. This allows us to associate sentiment with place. We perform spatial hotspot detection and show that different emotions have distinct spatial distributions that match expectations. We also perform temporal analysis using the capture time of the photos. Our spatio-temporal hotspot detection correctly identifies emerging concentrations of specific emotions and year-by-year analyses of select locations show there are strong temporal correlations between the predicted emotions and known events.\",\"PeriodicalId\":20525,\"journal\":{\"name\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2996913.2996978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

我们使用地理标记的照片集对公众情绪进行时空分析。我们开发了一个基于深度学习的分类器来预测图像所传达的情感。这使我们能够将情感与地点联系起来。我们进行了空间热点检测,并表明不同的情绪具有与期望相匹配的不同空间分布。我们还使用照片的捕获时间进行时间分析。我们的时空热点检测正确地识别了特定情绪的新集中,对选定地点的逐年分析表明,预测的情绪与已知事件之间存在很强的时间相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatio-temporal sentiment hotspot detection using geotagged photos
We perform spatio-temporal analysis of public sentiment using geotagged photo collections. We develop a deep learning-based classifier that predicts the emotion conveyed by an image. This allows us to associate sentiment with place. We perform spatial hotspot detection and show that different emotions have distinct spatial distributions that match expectations. We also perform temporal analysis using the capture time of the photos. Our spatio-temporal hotspot detection correctly identifies emerging concentrations of specific emotions and year-by-year analyses of select locations show there are strong temporal correlations between the predicted emotions and known events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信