采用异步结构的定时同步系统的理论基础

R. Tadros, P. Beerel
{"title":"采用异步结构的定时同步系统的理论基础","authors":"R. Tadros, P. Beerel","doi":"10.1145/3373355","DOIUrl":null,"url":null,"abstract":"Timing of synchronous systems is an everlasting stumbling block to the booming demands for lower power consumption and higher operation speeds in the electronics industry. This hardship is aggravated by the growing levels of variability in state-of-the-art silicon dimensions and in other beyond-CMOS technologies. Although some designers continue to strongly believe in the performance advantages of being fully synchronous, others have radically shifted toward extremely robust delay-insensitive domains. Targeting a different compromise of both performance and robustness, this article provides sufficient conditions for an asynchronous system to be able to generate the periodic signals necessary for the timing of a fully synchronous system and highlights a specific hierarchical clocking structure that with a single tunable delay satisfies these conditions. Using an asynchronous clock distribution network benefits from both the natural robustness of asynchronous structures and the advantageous performance of synchronous clocking.","PeriodicalId":6933,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","volume":"247 1","pages":"1 - 28"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Theoretical Foundation for Timing Synchronous Systems Using Asynchronous Structures\",\"authors\":\"R. Tadros, P. Beerel\",\"doi\":\"10.1145/3373355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Timing of synchronous systems is an everlasting stumbling block to the booming demands for lower power consumption and higher operation speeds in the electronics industry. This hardship is aggravated by the growing levels of variability in state-of-the-art silicon dimensions and in other beyond-CMOS technologies. Although some designers continue to strongly believe in the performance advantages of being fully synchronous, others have radically shifted toward extremely robust delay-insensitive domains. Targeting a different compromise of both performance and robustness, this article provides sufficient conditions for an asynchronous system to be able to generate the periodic signals necessary for the timing of a fully synchronous system and highlights a specific hierarchical clocking structure that with a single tunable delay satisfies these conditions. Using an asynchronous clock distribution network benefits from both the natural robustness of asynchronous structures and the advantageous performance of synchronous clocking.\",\"PeriodicalId\":6933,\"journal\":{\"name\":\"ACM Transactions on Design Automation of Electronic Systems (TODAES)\",\"volume\":\"247 1\",\"pages\":\"1 - 28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Design Automation of Electronic Systems (TODAES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3373355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3373355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

同步系统的时序是电子工业对低功耗和高运行速度不断增长的需求的永久绊脚石。最先进的硅尺寸和其他超越cmos的技术的变化水平不断增加,加剧了这种困难。尽管一些设计人员仍然坚信完全同步的性能优势,但其他人已经从根本上转向了极其健壮的延迟不敏感域。针对性能和鲁棒性的不同折衷,本文提供了异步系统能够生成完全同步系统定时所需的周期性信号的充分条件,并强调了具有单个可调延迟的特定分层时钟结构,该结构满足这些条件。采用异步时钟分配网络既具有异步结构的天然鲁棒性,又具有同步时钟的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Theoretical Foundation for Timing Synchronous Systems Using Asynchronous Structures
Timing of synchronous systems is an everlasting stumbling block to the booming demands for lower power consumption and higher operation speeds in the electronics industry. This hardship is aggravated by the growing levels of variability in state-of-the-art silicon dimensions and in other beyond-CMOS technologies. Although some designers continue to strongly believe in the performance advantages of being fully synchronous, others have radically shifted toward extremely robust delay-insensitive domains. Targeting a different compromise of both performance and robustness, this article provides sufficient conditions for an asynchronous system to be able to generate the periodic signals necessary for the timing of a fully synchronous system and highlights a specific hierarchical clocking structure that with a single tunable delay satisfies these conditions. Using an asynchronous clock distribution network benefits from both the natural robustness of asynchronous structures and the advantageous performance of synchronous clocking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信