次临界情况下高维非极小耦合Klein-Gordon方程的爆破动力学

M. P. Wijayanto, F. Akbar, B. Gunara
{"title":"次临界情况下高维非极小耦合Klein-Gordon方程的爆破动力学","authors":"M. P. Wijayanto, F. Akbar, B. Gunara","doi":"10.5614/itb.ijp.2022.33.1.5","DOIUrl":null,"url":null,"abstract":"The aim of this present work is to study the blow-up dynamics and lifespanestimate for solution to higher dimensional Klein-Gordon Equation in subcritical case, in which1 < p < psc. We construct the equation of motion from the Lagrangian of Klein-Gordon withnon-minimal coupling, where the coupling interaction of the scalar field is proportional to thescalar curvature of the spacetime. The equation of motion has the form like nonlinear dampedwave equation with mass. The novelty of this work is the time dependent of nonlinear term. Weuse test function method to proof the lifespan estimate.","PeriodicalId":13535,"journal":{"name":"Indonesian Journal of Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blow-up Dynamics of Higher Dimensional Klein-Gordon Equation with Nonminimal Coupling in Subcritical Case\",\"authors\":\"M. P. Wijayanto, F. Akbar, B. Gunara\",\"doi\":\"10.5614/itb.ijp.2022.33.1.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this present work is to study the blow-up dynamics and lifespanestimate for solution to higher dimensional Klein-Gordon Equation in subcritical case, in which1 < p < psc. We construct the equation of motion from the Lagrangian of Klein-Gordon withnon-minimal coupling, where the coupling interaction of the scalar field is proportional to thescalar curvature of the spacetime. The equation of motion has the form like nonlinear dampedwave equation with mass. The novelty of this work is the time dependent of nonlinear term. Weuse test function method to proof the lifespan estimate.\",\"PeriodicalId\":13535,\"journal\":{\"name\":\"Indonesian Journal of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/itb.ijp.2022.33.1.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/itb.ijp.2022.33.1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是研究在1 < p < psc的亚临界情况下高维Klein-Gordon方程解的爆破动力学和寿命估计。我们从非极小耦合的拉格朗日方程出发,构造了标量场的耦合作用与时空的标量曲率成正比的运动方程。运动方程的形式类似于非线性带质量的阻尼波动方程。这项工作的新颖之处在于非线性项的时间依赖性。我们采用测试函数法对寿命估算进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blow-up Dynamics of Higher Dimensional Klein-Gordon Equation with Nonminimal Coupling in Subcritical Case
The aim of this present work is to study the blow-up dynamics and lifespanestimate for solution to higher dimensional Klein-Gordon Equation in subcritical case, in which1 < p < psc. We construct the equation of motion from the Lagrangian of Klein-Gordon withnon-minimal coupling, where the coupling interaction of the scalar field is proportional to thescalar curvature of the spacetime. The equation of motion has the form like nonlinear dampedwave equation with mass. The novelty of this work is the time dependent of nonlinear term. Weuse test function method to proof the lifespan estimate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信