{"title":"零均值随机介质中界面的固定","authors":"P. Dondl, Martin Jesenko, M. Scheutzow","doi":"10.4171/ifb/455","DOIUrl":null,"url":null,"abstract":"We consider a discrete and a continuum model for the propagation of a curvature sensitive interface in a time independent random medium. In both cases we suppose that the medium contains obstacles that act on the propagation of the interface with an inhibitory or an acceleratory force. We show that the interface remains bounded for all times even when a small constant external driving force is applied. This phenomenon has already been known when only inhibitory obstacles are present. In this work we extend this result to the case of, for example, a random medium of random zero mean forcing.","PeriodicalId":13863,"journal":{"name":"Interfaces and Free Boundaries","volume":"8 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pinning of interfaces in a random medium with zero mean\",\"authors\":\"P. Dondl, Martin Jesenko, M. Scheutzow\",\"doi\":\"10.4171/ifb/455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a discrete and a continuum model for the propagation of a curvature sensitive interface in a time independent random medium. In both cases we suppose that the medium contains obstacles that act on the propagation of the interface with an inhibitory or an acceleratory force. We show that the interface remains bounded for all times even when a small constant external driving force is applied. This phenomenon has already been known when only inhibitory obstacles are present. In this work we extend this result to the case of, for example, a random medium of random zero mean forcing.\",\"PeriodicalId\":13863,\"journal\":{\"name\":\"Interfaces and Free Boundaries\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interfaces and Free Boundaries\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ifb/455\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfaces and Free Boundaries","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ifb/455","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Pinning of interfaces in a random medium with zero mean
We consider a discrete and a continuum model for the propagation of a curvature sensitive interface in a time independent random medium. In both cases we suppose that the medium contains obstacles that act on the propagation of the interface with an inhibitory or an acceleratory force. We show that the interface remains bounded for all times even when a small constant external driving force is applied. This phenomenon has already been known when only inhibitory obstacles are present. In this work we extend this result to the case of, for example, a random medium of random zero mean forcing.
期刊介绍:
Interfaces and Free Boundaries is dedicated to the mathematical modelling, analysis and computation of interfaces and free boundary problems in all areas where such phenomena are pertinent. The journal aims to be a forum where mathematical analysis, partial differential equations, modelling, scientific computing and the various applications which involve mathematical modelling meet. Submissions should, ideally, emphasize the combination of theory and application.