{"title":"零均值随机介质中界面的固定","authors":"P. Dondl, Martin Jesenko, M. Scheutzow","doi":"10.4171/ifb/455","DOIUrl":null,"url":null,"abstract":"We consider a discrete and a continuum model for the propagation of a curvature sensitive interface in a time independent random medium. In both cases we suppose that the medium contains obstacles that act on the propagation of the interface with an inhibitory or an acceleratory force. We show that the interface remains bounded for all times even when a small constant external driving force is applied. This phenomenon has already been known when only inhibitory obstacles are present. In this work we extend this result to the case of, for example, a random medium of random zero mean forcing.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pinning of interfaces in a random medium with zero mean\",\"authors\":\"P. Dondl, Martin Jesenko, M. Scheutzow\",\"doi\":\"10.4171/ifb/455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a discrete and a continuum model for the propagation of a curvature sensitive interface in a time independent random medium. In both cases we suppose that the medium contains obstacles that act on the propagation of the interface with an inhibitory or an acceleratory force. We show that the interface remains bounded for all times even when a small constant external driving force is applied. This phenomenon has already been known when only inhibitory obstacles are present. In this work we extend this result to the case of, for example, a random medium of random zero mean forcing.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ifb/455\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ifb/455","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Pinning of interfaces in a random medium with zero mean
We consider a discrete and a continuum model for the propagation of a curvature sensitive interface in a time independent random medium. In both cases we suppose that the medium contains obstacles that act on the propagation of the interface with an inhibitory or an acceleratory force. We show that the interface remains bounded for all times even when a small constant external driving force is applied. This phenomenon has already been known when only inhibitory obstacles are present. In this work we extend this result to the case of, for example, a random medium of random zero mean forcing.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.