类型理论与递归

G. Plotkin
{"title":"类型理论与递归","authors":"G. Plotkin","doi":"10.1109/LICS.1993.287571","DOIUrl":null,"url":null,"abstract":"Summary form only given. Type theory and recursion are analyzed in terms of intuitionistic linear type theory. This is compatible with a general recursion operator for the intuitionistic functions. The author considers second-order intuitionistic linear type theory whose primitive type constructions are linear and intuitionistic function types and second-order quantification.<<ETX>>","PeriodicalId":6322,"journal":{"name":"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science","volume":"146 1","pages":"374-"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Type theory and recursion\",\"authors\":\"G. Plotkin\",\"doi\":\"10.1109/LICS.1993.287571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. Type theory and recursion are analyzed in terms of intuitionistic linear type theory. This is compatible with a general recursion operator for the intuitionistic functions. The author considers second-order intuitionistic linear type theory whose primitive type constructions are linear and intuitionistic function types and second-order quantification.<<ETX>>\",\"PeriodicalId\":6322,\"journal\":{\"name\":\"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"146 1\",\"pages\":\"374-\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.1993.287571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1993.287571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

只提供摘要形式。用直观线性类型理论分析了类型论和递归。这与用于直观函数的一般递归操作符兼容。本文研究了二阶直观线性类型理论,其基本类型结构是线性和直观函数类型以及二阶量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Type theory and recursion
Summary form only given. Type theory and recursion are analyzed in terms of intuitionistic linear type theory. This is compatible with a general recursion operator for the intuitionistic functions. The author considers second-order intuitionistic linear type theory whose primitive type constructions are linear and intuitionistic function types and second-order quantification.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信