广义Manin变换和QRT映射

IF 1 Q3 Engineering
Peter H. van der Kamp, D. McLaren, G. Quispel
{"title":"广义Manin变换和QRT映射","authors":"Peter H. van der Kamp, D. McLaren, G. Quispel","doi":"10.3934/JCD.2021009","DOIUrl":null,"url":null,"abstract":"Manin transformations are maps of the plane that preserve a pencil of cubic curves. We generalise to maps that preserve quadratic, and certain quartic and higher degree pencils, and show they are measure preserving. The full 18-parameter QRT map is obtained as a special instance of the quartic case in a limit where two double base points go to infinity. On the other hand, each generalised Manin transformation can be brought into QRT-form by a fractional affine transformation. We also classify the generalised Manin transformations which admit a root.","PeriodicalId":37526,"journal":{"name":"Journal of Computational Dynamics","volume":"66 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2018-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Generalised Manin transformations and QRT maps\",\"authors\":\"Peter H. van der Kamp, D. McLaren, G. Quispel\",\"doi\":\"10.3934/JCD.2021009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manin transformations are maps of the plane that preserve a pencil of cubic curves. We generalise to maps that preserve quadratic, and certain quartic and higher degree pencils, and show they are measure preserving. The full 18-parameter QRT map is obtained as a special instance of the quartic case in a limit where two double base points go to infinity. On the other hand, each generalised Manin transformation can be brought into QRT-form by a fractional affine transformation. We also classify the generalised Manin transformations which admit a root.\",\"PeriodicalId\":37526,\"journal\":{\"name\":\"Journal of Computational Dynamics\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/JCD.2021009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/JCD.2021009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 10

摘要

许多变换是平面的映射,它保留了一束三次曲线。我们将其推广到保存二次、某些四次和更高次铅笔的映射,并表明它们是保存度量的。完整的18参数QRT映射是在两个双基点趋于无穷极限的四次情形下的一个特例。另一方面,每个广义Manin变换都可以通过分数仿射变换转化为qrt形式。我们也对承认有根的广义Manin变换进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalised Manin transformations and QRT maps
Manin transformations are maps of the plane that preserve a pencil of cubic curves. We generalise to maps that preserve quadratic, and certain quartic and higher degree pencils, and show they are measure preserving. The full 18-parameter QRT map is obtained as a special instance of the quartic case in a limit where two double base points go to infinity. On the other hand, each generalised Manin transformation can be brought into QRT-form by a fractional affine transformation. We also classify the generalised Manin transformations which admit a root.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Dynamics
Journal of Computational Dynamics Engineering-Computational Mechanics
CiteScore
2.30
自引率
10.00%
发文量
31
期刊介绍: JCD is focused on the intersection of computation with deterministic and stochastic dynamics. The mission of the journal is to publish papers that explore new computational methods for analyzing dynamic problems or use novel dynamical methods to improve computation. The subject matter of JCD includes both fundamental mathematical contributions and applications to problems from science and engineering. A non-exhaustive list of topics includes * Computation of phase-space structures and bifurcations * Multi-time-scale methods * Structure-preserving integration * Nonlinear and stochastic model reduction * Set-valued numerical techniques * Network and distributed dynamics JCD includes both original research and survey papers that give a detailed and illuminating treatment of an important area of current interest. The editorial board of JCD consists of world-leading researchers from mathematics, engineering, and science, all of whom are experts in both computational methods and the theory of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信