{"title":"G3raphGround:基于图形的语言基础","authors":"Mohit Bajaj, Lanjun Wang, L. Sigal","doi":"10.1109/ICCV.2019.00438","DOIUrl":null,"url":null,"abstract":"In this paper we present an end-to-end framework for grounding of phrases in images. In contrast to previous works, our model, which we call GraphGround, uses graphs to formulate more complex, non-sequential dependencies among proposal image regions and phrases. We capture intra-modal dependencies using a separate graph neural network for each modality (visual and lingual), and then use conditional message-passing in another graph neural network to fuse their outputs and capture cross-modal relationships. This final representation results in grounding decisions. The framework supports many-to-many matching and is able to ground single phrase to multiple image regions and vice versa. We validate our design choices through a series of ablation studies and illustrate state-of-the-art performance on Flickr30k and ReferIt Game benchmark datasets.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"14 1","pages":"4280-4289"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"G3raphGround: Graph-Based Language Grounding\",\"authors\":\"Mohit Bajaj, Lanjun Wang, L. Sigal\",\"doi\":\"10.1109/ICCV.2019.00438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an end-to-end framework for grounding of phrases in images. In contrast to previous works, our model, which we call GraphGround, uses graphs to formulate more complex, non-sequential dependencies among proposal image regions and phrases. We capture intra-modal dependencies using a separate graph neural network for each modality (visual and lingual), and then use conditional message-passing in another graph neural network to fuse their outputs and capture cross-modal relationships. This final representation results in grounding decisions. The framework supports many-to-many matching and is able to ground single phrase to multiple image regions and vice versa. We validate our design choices through a series of ablation studies and illustrate state-of-the-art performance on Flickr30k and ReferIt Game benchmark datasets.\",\"PeriodicalId\":6728,\"journal\":{\"name\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"14 1\",\"pages\":\"4280-4289\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2019.00438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we present an end-to-end framework for grounding of phrases in images. In contrast to previous works, our model, which we call GraphGround, uses graphs to formulate more complex, non-sequential dependencies among proposal image regions and phrases. We capture intra-modal dependencies using a separate graph neural network for each modality (visual and lingual), and then use conditional message-passing in another graph neural network to fuse their outputs and capture cross-modal relationships. This final representation results in grounding decisions. The framework supports many-to-many matching and is able to ground single phrase to multiple image regions and vice versa. We validate our design choices through a series of ablation studies and illustrate state-of-the-art performance on Flickr30k and ReferIt Game benchmark datasets.