贝叶斯多摄像头监控

Vera M. Kettnaker, R. Zabih
{"title":"贝叶斯多摄像头监控","authors":"Vera M. Kettnaker, R. Zabih","doi":"10.1109/CVPR.1999.784638","DOIUrl":null,"url":null,"abstract":"The task of multicamera surveillance is to reconstruct the paths taken by all moving objects that are temporally visible from multiple non-overlapping cameras. We present a Bayesian formalization of this task, where the optimal solution is the set of object paths with the highest posterior probability given the observed data. We show how to efficiently approximate the maximum a posteriori solution by linear programming and present initial experimental results.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"338","resultStr":"{\"title\":\"Bayesian multi-camera surveillance\",\"authors\":\"Vera M. Kettnaker, R. Zabih\",\"doi\":\"10.1109/CVPR.1999.784638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The task of multicamera surveillance is to reconstruct the paths taken by all moving objects that are temporally visible from multiple non-overlapping cameras. We present a Bayesian formalization of this task, where the optimal solution is the set of object paths with the highest posterior probability given the observed data. We show how to efficiently approximate the maximum a posteriori solution by linear programming and present initial experimental results.\",\"PeriodicalId\":20644,\"journal\":{\"name\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"338\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1999.784638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 338

摘要

多摄像机监控的任务是重建从多个非重叠摄像机中暂时可见的所有运动物体所采取的路径。我们提出了该任务的贝叶斯形式化,其中最优解是给定观测数据的具有最高后验概率的目标路径集。我们展示了如何用线性规划有效地逼近最大后验解,并给出了初步的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian multi-camera surveillance
The task of multicamera surveillance is to reconstruct the paths taken by all moving objects that are temporally visible from multiple non-overlapping cameras. We present a Bayesian formalization of this task, where the optimal solution is the set of object paths with the highest posterior probability given the observed data. We show how to efficiently approximate the maximum a posteriori solution by linear programming and present initial experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信