纳米电网中单个家庭仅基于消费的负荷预测:一个案例研究

M. Caliano, A. Buonanno, G. Graditi, A. Pontecorvo, Gianluca Sforza, M. Valenti
{"title":"纳米电网中单个家庭仅基于消费的负荷预测:一个案例研究","authors":"M. Caliano, A. Buonanno, G. Graditi, A. Pontecorvo, Gianluca Sforza, M. Valenti","doi":"10.23919/AEIT50178.2020.9241127","DOIUrl":null,"url":null,"abstract":"Electricity load forecasting plays an important role in planning and a vital role in the operational management of an electric power system based on smart grids. In this work, several data-driven approaches are used to forecast the individual electricity demand for the subsequent hour of three Italian households in a nanogrid context. For each user, the tested prediction models exploit only the historic series of total electricity consumption. The results show similar performances in all models implemented. Despite a widespread delay, the predictions follow the measurement trend well, while also highlighting the particular difficulty of predicting peak values.","PeriodicalId":6689,"journal":{"name":"2020 AEIT International Annual Conference (AEIT)","volume":"48 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Consumption based-only load forecasting for individual households in nanogrids: a case study\",\"authors\":\"M. Caliano, A. Buonanno, G. Graditi, A. Pontecorvo, Gianluca Sforza, M. Valenti\",\"doi\":\"10.23919/AEIT50178.2020.9241127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electricity load forecasting plays an important role in planning and a vital role in the operational management of an electric power system based on smart grids. In this work, several data-driven approaches are used to forecast the individual electricity demand for the subsequent hour of three Italian households in a nanogrid context. For each user, the tested prediction models exploit only the historic series of total electricity consumption. The results show similar performances in all models implemented. Despite a widespread delay, the predictions follow the measurement trend well, while also highlighting the particular difficulty of predicting peak values.\",\"PeriodicalId\":6689,\"journal\":{\"name\":\"2020 AEIT International Annual Conference (AEIT)\",\"volume\":\"48 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 AEIT International Annual Conference (AEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/AEIT50178.2020.9241127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 AEIT International Annual Conference (AEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AEIT50178.2020.9241127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于智能电网的电力系统负荷预测在规划和运行管理中具有重要作用。在这项工作中,使用了几种数据驱动的方法来预测三个意大利家庭在纳米电网环境下随后一小时的个人电力需求。对于每个用户,测试的预测模型只利用总用电量的历史序列。结果表明,在实现的所有模型中,性能相似。尽管存在广泛的延迟,但预测结果很好地遵循了测量趋势,同时也突出了预测峰值的特殊困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Consumption based-only load forecasting for individual households in nanogrids: a case study
Electricity load forecasting plays an important role in planning and a vital role in the operational management of an electric power system based on smart grids. In this work, several data-driven approaches are used to forecast the individual electricity demand for the subsequent hour of three Italian households in a nanogrid context. For each user, the tested prediction models exploit only the historic series of total electricity consumption. The results show similar performances in all models implemented. Despite a widespread delay, the predictions follow the measurement trend well, while also highlighting the particular difficulty of predicting peak values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信