Sarah Edenhofer, Sven Tomforde, D. Fischer, J. Hähner, F. Menzel, S. Mammen
{"title":"受蚂蚁信息素启发的去中心化信任管理","authors":"Sarah Edenhofer, Sven Tomforde, D. Fischer, J. Hähner, F. Menzel, S. Mammen","doi":"10.1504/IJMNDI.2017.082804","DOIUrl":null,"url":null,"abstract":"Computational trust is increasingly utilised to select interaction partners in open technical systems consisting of heterogeneous, autonomous agents. Current approaches rely on centralised elements for managing trust ratings (i.e. control and provide access to aggregated ratings). Consider a grid computing application as illustrating example: agents share their computing resources and cooperate in terms of processing computing jobs. These agents are free to join and leave, and they decide on their own with whom to interact. The impact of malicious or uncooperative agents can be countered by only cooperating with agents that have shown to be benevolent: trust relationships are established. Typically, this requires a centralised data-base storing information about past interactions and their outcome. In this article, we propose a novel, decentralised trust mechanism inspired by the nestmate recognition system in ants. More precisely, the concept of recognition pheromones, which stick to the agents and cannot be removed or counterfeit, is turned into algorithmic logic and interaction protocols. We demonstrate the potential benefit by using simulations of the grid scenario.","PeriodicalId":35022,"journal":{"name":"International Journal of Mobile Network Design and Innovation","volume":"70 1","pages":"46-55"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Decentralised trust-management inspired by ant pheromones\",\"authors\":\"Sarah Edenhofer, Sven Tomforde, D. Fischer, J. Hähner, F. Menzel, S. Mammen\",\"doi\":\"10.1504/IJMNDI.2017.082804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational trust is increasingly utilised to select interaction partners in open technical systems consisting of heterogeneous, autonomous agents. Current approaches rely on centralised elements for managing trust ratings (i.e. control and provide access to aggregated ratings). Consider a grid computing application as illustrating example: agents share their computing resources and cooperate in terms of processing computing jobs. These agents are free to join and leave, and they decide on their own with whom to interact. The impact of malicious or uncooperative agents can be countered by only cooperating with agents that have shown to be benevolent: trust relationships are established. Typically, this requires a centralised data-base storing information about past interactions and their outcome. In this article, we propose a novel, decentralised trust mechanism inspired by the nestmate recognition system in ants. More precisely, the concept of recognition pheromones, which stick to the agents and cannot be removed or counterfeit, is turned into algorithmic logic and interaction protocols. We demonstrate the potential benefit by using simulations of the grid scenario.\",\"PeriodicalId\":35022,\"journal\":{\"name\":\"International Journal of Mobile Network Design and Innovation\",\"volume\":\"70 1\",\"pages\":\"46-55\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mobile Network Design and Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJMNDI.2017.082804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mobile Network Design and Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMNDI.2017.082804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
Decentralised trust-management inspired by ant pheromones
Computational trust is increasingly utilised to select interaction partners in open technical systems consisting of heterogeneous, autonomous agents. Current approaches rely on centralised elements for managing trust ratings (i.e. control and provide access to aggregated ratings). Consider a grid computing application as illustrating example: agents share their computing resources and cooperate in terms of processing computing jobs. These agents are free to join and leave, and they decide on their own with whom to interact. The impact of malicious or uncooperative agents can be countered by only cooperating with agents that have shown to be benevolent: trust relationships are established. Typically, this requires a centralised data-base storing information about past interactions and their outcome. In this article, we propose a novel, decentralised trust mechanism inspired by the nestmate recognition system in ants. More precisely, the concept of recognition pheromones, which stick to the agents and cannot be removed or counterfeit, is turned into algorithmic logic and interaction protocols. We demonstrate the potential benefit by using simulations of the grid scenario.
期刊介绍:
The IJMNDI addresses the state-of-the-art in computerisation for the deployment and operation of current and future wireless networks. Following the trend in many other engineering disciplines, intelligent and automatic computer software has become the critical factor for obtaining high performance network solutions that meet the objectives of both the network subscriber and operator. Characteristically, high performance and innovative techniques are required to address computationally intensive radio engineering planning problems while providing optimised solutions and knowledge which will enhance the deployment and operation of expensive wireless resources.