利用深度学习技术识别异常鸡细胞

IF 0.5 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Natinai Jinsakul, Cheng-Fa Tsai, Chia-En Tsai
{"title":"利用深度学习技术识别异常鸡细胞","authors":"Natinai Jinsakul, Cheng-Fa Tsai, Chia-En Tsai","doi":"10.6688/JISE.202107_37(4).0006","DOIUrl":null,"url":null,"abstract":"Chicken cell abnormal identification by manual method that clearly lacks speed and accuracy. However, the success of deep learning techniques from the convolutional neural network (CNN), it may be providing solutions to cell biology laboratory tasks. This paper collected the novel chicken cell microscopic image datasets for training the different kinds of CNN models and optimizers to find promising applications that might be developed. The top model indicates that ResNet34 with Adam optimizer achieved training accuracy of 100%, testing accuracy of 98.14%, and the lower time on the outstanding confusion matrix. In addition, the validation result represented correct identification, guaranteeing by experts. This study shows the potential method to be improved to an application of identification systems in the actual animal and biology laboratories.","PeriodicalId":50177,"journal":{"name":"Journal of Information Science and Engineering","volume":"10 1","pages":"827-838"},"PeriodicalIF":0.5000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomaly Chicken Cell Identification Using Deep Learning Techniques\",\"authors\":\"Natinai Jinsakul, Cheng-Fa Tsai, Chia-En Tsai\",\"doi\":\"10.6688/JISE.202107_37(4).0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chicken cell abnormal identification by manual method that clearly lacks speed and accuracy. However, the success of deep learning techniques from the convolutional neural network (CNN), it may be providing solutions to cell biology laboratory tasks. This paper collected the novel chicken cell microscopic image datasets for training the different kinds of CNN models and optimizers to find promising applications that might be developed. The top model indicates that ResNet34 with Adam optimizer achieved training accuracy of 100%, testing accuracy of 98.14%, and the lower time on the outstanding confusion matrix. In addition, the validation result represented correct identification, guaranteeing by experts. This study shows the potential method to be improved to an application of identification systems in the actual animal and biology laboratories.\",\"PeriodicalId\":50177,\"journal\":{\"name\":\"Journal of Information Science and Engineering\",\"volume\":\"10 1\",\"pages\":\"827-838\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Science and Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.6688/JISE.202107_37(4).0006\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.6688/JISE.202107_37(4).0006","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

用人工方法鉴定鸡细胞异常明显缺乏速度和准确性。然而,深度学习技术的成功来源于卷积神经网络(CNN),它可能为细胞生物学的实验室任务提供解决方案。本文收集了新的鸡细胞显微图像数据集,用于训练不同类型的CNN模型和优化器,以寻找可能开发的有前途的应用。顶部模型表明,使用Adam优化器的ResNet34的训练准确率为100%,测试准确率为98.14%,并且在突出混淆矩阵上花费的时间更短。此外,验证结果代表了正确的识别,由专家保证。该研究表明,该方法在实际的动物和生物实验室的识别系统中有可能得到改进和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anomaly Chicken Cell Identification Using Deep Learning Techniques
Chicken cell abnormal identification by manual method that clearly lacks speed and accuracy. However, the success of deep learning techniques from the convolutional neural network (CNN), it may be providing solutions to cell biology laboratory tasks. This paper collected the novel chicken cell microscopic image datasets for training the different kinds of CNN models and optimizers to find promising applications that might be developed. The top model indicates that ResNet34 with Adam optimizer achieved training accuracy of 100%, testing accuracy of 98.14%, and the lower time on the outstanding confusion matrix. In addition, the validation result represented correct identification, guaranteeing by experts. This study shows the potential method to be improved to an application of identification systems in the actual animal and biology laboratories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Information Science and Engineering
Journal of Information Science and Engineering 工程技术-计算机:信息系统
CiteScore
2.00
自引率
0.00%
发文量
4
审稿时长
8 months
期刊介绍: The Journal of Information Science and Engineering is dedicated to the dissemination of information on computer science, computer engineering, and computer systems. This journal encourages articles on original research in the areas of computer hardware, software, man-machine interface, theory and applications. tutorial papers in the above-mentioned areas, and state-of-the-art papers on various aspects of computer systems and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信