{"title":"表示和预测在线大学课程中学生的导航路径","authors":"Renzhe Yu, Daokun Jiang, M. Warschauer","doi":"10.1145/3231644.3231702","DOIUrl":null,"url":null,"abstract":"Representation and prediction of student navigational pathways, typically based on neural network (NN) methods, have seen their potential of improving instruction and learning under insufficient human knowledge about learner behavior. However, they are prominently studied in MOOCs and less probed within more institutionalized higher education scenarios. This work extends such research to the context of online college courses. Comparing student navigational sequences through course pages to documents in natural language processing, we apply a skip-gram model to learn vector embedding of course pages, and visualize the learnt vectors to understand the extent to which students' learning pathways align with pre-designed course structure. We find that students who get different letter grades in the end exhibit different levels of adherence to designed sequence. Next, we fit the embedded sequences into a long short-term memory architecture and test its ability to predict next page that a student visits given her prior sequence. The highest accuracy reaches 50.8% and largely outperforms the frequency-based baseline of 41.3%. These results show that neural network methods have the potential to help instructors understand students' learning behaviors and facilitate automated instructional support.","PeriodicalId":20634,"journal":{"name":"Proceedings of the Fifth Annual ACM Conference on Learning at Scale","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Representing and predicting student navigational pathways in online college courses\",\"authors\":\"Renzhe Yu, Daokun Jiang, M. Warschauer\",\"doi\":\"10.1145/3231644.3231702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Representation and prediction of student navigational pathways, typically based on neural network (NN) methods, have seen their potential of improving instruction and learning under insufficient human knowledge about learner behavior. However, they are prominently studied in MOOCs and less probed within more institutionalized higher education scenarios. This work extends such research to the context of online college courses. Comparing student navigational sequences through course pages to documents in natural language processing, we apply a skip-gram model to learn vector embedding of course pages, and visualize the learnt vectors to understand the extent to which students' learning pathways align with pre-designed course structure. We find that students who get different letter grades in the end exhibit different levels of adherence to designed sequence. Next, we fit the embedded sequences into a long short-term memory architecture and test its ability to predict next page that a student visits given her prior sequence. The highest accuracy reaches 50.8% and largely outperforms the frequency-based baseline of 41.3%. These results show that neural network methods have the potential to help instructors understand students' learning behaviors and facilitate automated instructional support.\",\"PeriodicalId\":20634,\"journal\":{\"name\":\"Proceedings of the Fifth Annual ACM Conference on Learning at Scale\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth Annual ACM Conference on Learning at Scale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3231644.3231702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth Annual ACM Conference on Learning at Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3231644.3231702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Representing and predicting student navigational pathways in online college courses
Representation and prediction of student navigational pathways, typically based on neural network (NN) methods, have seen their potential of improving instruction and learning under insufficient human knowledge about learner behavior. However, they are prominently studied in MOOCs and less probed within more institutionalized higher education scenarios. This work extends such research to the context of online college courses. Comparing student navigational sequences through course pages to documents in natural language processing, we apply a skip-gram model to learn vector embedding of course pages, and visualize the learnt vectors to understand the extent to which students' learning pathways align with pre-designed course structure. We find that students who get different letter grades in the end exhibit different levels of adherence to designed sequence. Next, we fit the embedded sequences into a long short-term memory architecture and test its ability to predict next page that a student visits given her prior sequence. The highest accuracy reaches 50.8% and largely outperforms the frequency-based baseline of 41.3%. These results show that neural network methods have the potential to help instructors understand students' learning behaviors and facilitate automated instructional support.