本源导体阿贝尔场的类数奇偶性注记

S. Fujima, H. Ichimura
{"title":"本源导体阿贝尔场的类数奇偶性注记","authors":"S. Fujima, H. Ichimura","doi":"10.5036/MJIU.50.15","DOIUrl":null,"url":null,"abstract":"Let n ≥ 1 be an integer and let 2 be the highest power of 2 dividing n. For a prime number p = 2n` + 1 with an odd prime number `, let N be the imaginary abelian field of conductor p and degree 2` over Q. We show that for n ≤ 30, the relative class number hN of N is odd when 2 is a primitive root modulo ` except for the case where (n, `) = (27, 3) and p = 163 with the help of computer.","PeriodicalId":18362,"journal":{"name":"Mathematical Journal of Ibaraki University","volume":"37 1","pages":"15-26"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Note on class number parity of an abelian field of prime conductor\",\"authors\":\"S. Fujima, H. Ichimura\",\"doi\":\"10.5036/MJIU.50.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let n ≥ 1 be an integer and let 2 be the highest power of 2 dividing n. For a prime number p = 2n` + 1 with an odd prime number `, let N be the imaginary abelian field of conductor p and degree 2` over Q. We show that for n ≤ 30, the relative class number hN of N is odd when 2 is a primitive root modulo ` except for the case where (n, `) = (27, 3) and p = 163 with the help of computer.\",\"PeriodicalId\":18362,\"journal\":{\"name\":\"Mathematical Journal of Ibaraki University\",\"volume\":\"37 1\",\"pages\":\"15-26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Journal of Ibaraki University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5036/MJIU.50.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Journal of Ibaraki University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/MJIU.50.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

让n≥1是整数,让2 2除以n的最高力量。对于一个素数p = 2 n + 1和一个奇怪的质数,让n虚交换领域的导体p和程度2”在问:我们表明,n≤30 n是奇数的相对类数hN当2是一个原始的根模的情况除外(n ') =(27岁,3)和p = 163的帮助下电脑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Note on class number parity of an abelian field of prime conductor
Let n ≥ 1 be an integer and let 2 be the highest power of 2 dividing n. For a prime number p = 2n` + 1 with an odd prime number `, let N be the imaginary abelian field of conductor p and degree 2` over Q. We show that for n ≤ 30, the relative class number hN of N is odd when 2 is a primitive root modulo ` except for the case where (n, `) = (27, 3) and p = 163 with the help of computer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信