{"title":"本源导体阿贝尔场的类数奇偶性注记","authors":"S. Fujima, H. Ichimura","doi":"10.5036/MJIU.50.15","DOIUrl":null,"url":null,"abstract":"Let n ≥ 1 be an integer and let 2 be the highest power of 2 dividing n. For a prime number p = 2n` + 1 with an odd prime number `, let N be the imaginary abelian field of conductor p and degree 2` over Q. We show that for n ≤ 30, the relative class number hN of N is odd when 2 is a primitive root modulo ` except for the case where (n, `) = (27, 3) and p = 163 with the help of computer.","PeriodicalId":18362,"journal":{"name":"Mathematical Journal of Ibaraki University","volume":"37 1","pages":"15-26"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Note on class number parity of an abelian field of prime conductor\",\"authors\":\"S. Fujima, H. Ichimura\",\"doi\":\"10.5036/MJIU.50.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let n ≥ 1 be an integer and let 2 be the highest power of 2 dividing n. For a prime number p = 2n` + 1 with an odd prime number `, let N be the imaginary abelian field of conductor p and degree 2` over Q. We show that for n ≤ 30, the relative class number hN of N is odd when 2 is a primitive root modulo ` except for the case where (n, `) = (27, 3) and p = 163 with the help of computer.\",\"PeriodicalId\":18362,\"journal\":{\"name\":\"Mathematical Journal of Ibaraki University\",\"volume\":\"37 1\",\"pages\":\"15-26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Journal of Ibaraki University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5036/MJIU.50.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Journal of Ibaraki University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/MJIU.50.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Note on class number parity of an abelian field of prime conductor
Let n ≥ 1 be an integer and let 2 be the highest power of 2 dividing n. For a prime number p = 2n` + 1 with an odd prime number `, let N be the imaginary abelian field of conductor p and degree 2` over Q. We show that for n ≤ 30, the relative class number hN of N is odd when 2 is a primitive root modulo ` except for the case where (n, `) = (27, 3) and p = 163 with the help of computer.