{"title":"多孔弹塑性材料变形的计算机模拟及三维相似原理识别","authors":"V. Bazhenov, M. Zhestkov","doi":"10.17516/1997-1397-2021-14-6-746-755","DOIUrl":null,"url":null,"abstract":"It is proposed to numerically model large deformations of porous specimens, using the 3D- similarity principle in structural elements, which makes it possible to account for the inhomogeneity of the stress-strain state due to the presence of pores and allows one to vary the number of representa- tive volumes without changing porosity values and dimensions of the specimens. A methodology for determining true deformation diagrams of materials, using the results of compression tests, has been de- veloped. The efficiency of using the 3D-similarity principle is demonstrated by comparing the numerical and experimental results for the example analyzing compression of porous specimens of an aluminum alloy with free lateral surfaces and fixed in a rigid cartridge","PeriodicalId":43965,"journal":{"name":"Journal of Siberian Federal University-Mathematics & Physics","volume":"7 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computer Modeling Deformation of Porous Elastoplastic Materials and Identification their Characteristics Using the Principle of Three-dimensional Similarity\",\"authors\":\"V. Bazhenov, M. Zhestkov\",\"doi\":\"10.17516/1997-1397-2021-14-6-746-755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is proposed to numerically model large deformations of porous specimens, using the 3D- similarity principle in structural elements, which makes it possible to account for the inhomogeneity of the stress-strain state due to the presence of pores and allows one to vary the number of representa- tive volumes without changing porosity values and dimensions of the specimens. A methodology for determining true deformation diagrams of materials, using the results of compression tests, has been de- veloped. The efficiency of using the 3D-similarity principle is demonstrated by comparing the numerical and experimental results for the example analyzing compression of porous specimens of an aluminum alloy with free lateral surfaces and fixed in a rigid cartridge\",\"PeriodicalId\":43965,\"journal\":{\"name\":\"Journal of Siberian Federal University-Mathematics & Physics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Siberian Federal University-Mathematics & Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17516/1997-1397-2021-14-6-746-755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University-Mathematics & Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2021-14-6-746-755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Computer Modeling Deformation of Porous Elastoplastic Materials and Identification their Characteristics Using the Principle of Three-dimensional Similarity
It is proposed to numerically model large deformations of porous specimens, using the 3D- similarity principle in structural elements, which makes it possible to account for the inhomogeneity of the stress-strain state due to the presence of pores and allows one to vary the number of representa- tive volumes without changing porosity values and dimensions of the specimens. A methodology for determining true deformation diagrams of materials, using the results of compression tests, has been de- veloped. The efficiency of using the 3D-similarity principle is demonstrated by comparing the numerical and experimental results for the example analyzing compression of porous specimens of an aluminum alloy with free lateral surfaces and fixed in a rigid cartridge