磁拉普拉斯算子在非光滑域和规范变换中的所有自伴随扩展

C. Oliveira, W. Monteiro
{"title":"磁拉普拉斯算子在非光滑域和规范变换中的所有自伴随扩展","authors":"C. Oliveira, W. Monteiro","doi":"10.2422/2036-2145.201908_008","DOIUrl":null,"url":null,"abstract":"We use boundary triples to find a parametrization of all self-adjoint extensions of the magnetic Schrodinger operator, in a quasi-convex domain~$\\Omega$ with compact boundary, and magnetic potentials with components in $\\textrm{W}^{1}_{\\infty}(\\overline{\\Omega})$. This gives also a new characterization of all self-adjoint extensions of the Laplacian in nonregular domains. Then we discuss gauge transformations for such self-adjoint extensions and generalize a characterization of the gauge equivalence of the Dirichlet magnetic operator for the Dirichlet Laplacian; the relation to the Aharonov-Bohm effect, including irregular solenoids, is also discussed. In particular, in case of (bounded) quasi-convex domains it is shown that if some extension is unitarily equivalent (through the multiplication by a smooth unit function) to a realization with zero magnetic potential, then the same occurs for all self-adjoint realizations.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":"553 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"All self-adjoint extensions of the magnetic Laplacian in nonsmooth domains and gauge transformations\",\"authors\":\"C. Oliveira, W. Monteiro\",\"doi\":\"10.2422/2036-2145.201908_008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use boundary triples to find a parametrization of all self-adjoint extensions of the magnetic Schrodinger operator, in a quasi-convex domain~$\\\\Omega$ with compact boundary, and magnetic potentials with components in $\\\\textrm{W}^{1}_{\\\\infty}(\\\\overline{\\\\Omega})$. This gives also a new characterization of all self-adjoint extensions of the Laplacian in nonregular domains. Then we discuss gauge transformations for such self-adjoint extensions and generalize a characterization of the gauge equivalence of the Dirichlet magnetic operator for the Dirichlet Laplacian; the relation to the Aharonov-Bohm effect, including irregular solenoids, is also discussed. In particular, in case of (bounded) quasi-convex domains it is shown that if some extension is unitarily equivalent (through the multiplication by a smooth unit function) to a realization with zero magnetic potential, then the same occurs for all self-adjoint realizations.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":\"553 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.201908_008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.201908_008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们使用边界三元组找到磁性薛定谔算子的所有自伴随扩展的参数化,在具有紧边界的拟凸域$\Omega$中,以及在$\textrm{W}^{1}_{\infty}(\overline{\Omega})$中具有分量的磁势。这也给出了拉普拉斯算子在非正则域上的所有自伴随扩展的一个新的表征。然后讨论了这类自伴随扩展的规范变换,并推广了Dirichlet拉普拉斯算子的Dirichlet磁算子的规范等价的一个表征;还讨论了包括不规则螺线管在内的与Aharonov-Bohm效应的关系。特别地,在(有界)拟凸域的情况下,证明了如果某些扩展(通过与光滑单位函数的乘法)与具有零磁势的实现是一致等价的,那么对于所有自伴随实现都是相同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
All self-adjoint extensions of the magnetic Laplacian in nonsmooth domains and gauge transformations
We use boundary triples to find a parametrization of all self-adjoint extensions of the magnetic Schrodinger operator, in a quasi-convex domain~$\Omega$ with compact boundary, and magnetic potentials with components in $\textrm{W}^{1}_{\infty}(\overline{\Omega})$. This gives also a new characterization of all self-adjoint extensions of the Laplacian in nonregular domains. Then we discuss gauge transformations for such self-adjoint extensions and generalize a characterization of the gauge equivalence of the Dirichlet magnetic operator for the Dirichlet Laplacian; the relation to the Aharonov-Bohm effect, including irregular solenoids, is also discussed. In particular, in case of (bounded) quasi-convex domains it is shown that if some extension is unitarily equivalent (through the multiplication by a smooth unit function) to a realization with zero magnetic potential, then the same occurs for all self-adjoint realizations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信