潜入concatMap:动态规划的高效组合子

C. H. Z. Siederdissen
{"title":"潜入concatMap:动态规划的高效组合子","authors":"C. H. Z. Siederdissen","doi":"10.1145/2364527.2364559","DOIUrl":null,"url":null,"abstract":"We present a framework of dynamic programming combinators that provides a high-level environment to describe the recursions typical of dynamic programming over sequence data in a style very similar to algebraic dynamic programming (ADP). Using a combination of type-level programming and stream fusion leads to a substantial increase in performance, without sacrificing much of the convenience and theoretical underpinnings of ADP. We draw examples from the field of computational biology, more specifically RNA secondary structure prediction, to demonstrate how to use these combinators and what differences exist between this library, ADP, and other approaches. The final version of the combinator library allows writing algorithms with performance close to hand-optimized C code.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"36 1","pages":"215-226"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Sneaking around concatMap: efficient combinators for dynamic programming\",\"authors\":\"C. H. Z. Siederdissen\",\"doi\":\"10.1145/2364527.2364559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a framework of dynamic programming combinators that provides a high-level environment to describe the recursions typical of dynamic programming over sequence data in a style very similar to algebraic dynamic programming (ADP). Using a combination of type-level programming and stream fusion leads to a substantial increase in performance, without sacrificing much of the convenience and theoretical underpinnings of ADP. We draw examples from the field of computational biology, more specifically RNA secondary structure prediction, to demonstrate how to use these combinators and what differences exist between this library, ADP, and other approaches. The final version of the combinator library allows writing algorithms with performance close to hand-optimized C code.\",\"PeriodicalId\":20504,\"journal\":{\"name\":\"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming\",\"volume\":\"36 1\",\"pages\":\"215-226\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2364527.2364559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2364527.2364559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

我们提出了一个动态规划组合子框架,它提供了一个高级环境来描述序列数据上动态规划的递归,其风格非常类似于代数动态规划(ADP)。结合使用类型级编程和流融合可以大幅提高性能,而不会牺牲ADP的便利性和理论基础。我们从计算生物学领域(更具体地说,是RNA二级结构预测)中选取例子,来演示如何使用这些组合子,以及该库与ADP和其他方法之间存在哪些差异。组合器库的最终版本允许编写性能接近手工优化的C代码的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sneaking around concatMap: efficient combinators for dynamic programming
We present a framework of dynamic programming combinators that provides a high-level environment to describe the recursions typical of dynamic programming over sequence data in a style very similar to algebraic dynamic programming (ADP). Using a combination of type-level programming and stream fusion leads to a substantial increase in performance, without sacrificing much of the convenience and theoretical underpinnings of ADP. We draw examples from the field of computational biology, more specifically RNA secondary structure prediction, to demonstrate how to use these combinators and what differences exist between this library, ADP, and other approaches. The final version of the combinator library allows writing algorithms with performance close to hand-optimized C code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信