基于连分式展开的模乘除算法

Mourad Gouicem
{"title":"基于连分式展开的模乘除算法","authors":"Mourad Gouicem","doi":"10.1109/ARITH.2015.21","DOIUrl":null,"url":null,"abstract":"In this paper, we provide new methods to generate a class of algorithms computing modular multiplication and division. All these algorithms rely on sequences derived from the Euclidean algorithm for a well chosen input. We then use these sequences as number scales of the Ostrowski number system to construct the result of either the modular multiplication or division.","PeriodicalId":6526,"journal":{"name":"2015 IEEE 22nd Symposium on Computer Arithmetic","volume":"1 1","pages":"137-143"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modular Multiplication and Division Algorithms Based on Continued Fraction Expansion\",\"authors\":\"Mourad Gouicem\",\"doi\":\"10.1109/ARITH.2015.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we provide new methods to generate a class of algorithms computing modular multiplication and division. All these algorithms rely on sequences derived from the Euclidean algorithm for a well chosen input. We then use these sequences as number scales of the Ostrowski number system to construct the result of either the modular multiplication or division.\",\"PeriodicalId\":6526,\"journal\":{\"name\":\"2015 IEEE 22nd Symposium on Computer Arithmetic\",\"volume\":\"1 1\",\"pages\":\"137-143\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 22nd Symposium on Computer Arithmetic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.2015.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 22nd Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2015.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提供了新的方法来生成一类计算模乘法和模除法的算法。所有这些算法都依赖于由欧几里得算法导出的序列,以获得一个精心选择的输入。然后我们用这些数列作为Ostrowski数系统的数尺度来构造模乘法或模除法的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modular Multiplication and Division Algorithms Based on Continued Fraction Expansion
In this paper, we provide new methods to generate a class of algorithms computing modular multiplication and division. All these algorithms rely on sequences derived from the Euclidean algorithm for a well chosen input. We then use these sequences as number scales of the Ostrowski number system to construct the result of either the modular multiplication or division.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信