利用语音和词汇特征识别对话中的情绪

Leimin Tian, Johanna D. Moore, Catherine Lai
{"title":"利用语音和词汇特征识别对话中的情绪","authors":"Leimin Tian, Johanna D. Moore, Catherine Lai","doi":"10.1109/ACII.2015.7344651","DOIUrl":null,"url":null,"abstract":"Automatic emotion recognition has long been a focus of Affective Computing. We aim at improving the performance of state-of-the-art emotion recognition in dialogues using novel knowledge-inspired features and modality fusion strategies. We propose features based on disfluencies and nonverbal vocalisations (DIS-NVs), and show that they are highly predictive for recognizing emotions in spontaneous dialogues. We also propose the hierarchical fusion strategy as an alternative to current feature-level and decision-level fusion. This fusion strategy combines features from different modalities at different layers in a hierarchical structure. It is expected to overcome limitations of feature-level and decision-level fusion by including knowledge on modality differences, while preserving information of each modality.","PeriodicalId":6863,"journal":{"name":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","volume":"20 1","pages":"737-742"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Recognizing emotions in dialogues with acoustic and lexical features\",\"authors\":\"Leimin Tian, Johanna D. Moore, Catherine Lai\",\"doi\":\"10.1109/ACII.2015.7344651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic emotion recognition has long been a focus of Affective Computing. We aim at improving the performance of state-of-the-art emotion recognition in dialogues using novel knowledge-inspired features and modality fusion strategies. We propose features based on disfluencies and nonverbal vocalisations (DIS-NVs), and show that they are highly predictive for recognizing emotions in spontaneous dialogues. We also propose the hierarchical fusion strategy as an alternative to current feature-level and decision-level fusion. This fusion strategy combines features from different modalities at different layers in a hierarchical structure. It is expected to overcome limitations of feature-level and decision-level fusion by including knowledge on modality differences, while preserving information of each modality.\",\"PeriodicalId\":6863,\"journal\":{\"name\":\"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)\",\"volume\":\"20 1\",\"pages\":\"737-742\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACII.2015.7344651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACII.2015.7344651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

情感自动识别一直是情感计算领域的研究热点。我们的目标是使用新颖的知识启发特征和情态融合策略来提高对话中最先进的情感识别性能。我们提出了基于不流畅和非语言发声(DIS-NVs)的特征,并表明它们对识别自发对话中的情绪具有高度预测性。我们还提出了分层融合策略,作为当前特征级和决策级融合的替代方案。这种融合策略在层次结构中结合了不同层次上不同模态的特征。在保留各模态信息的同时,引入模态差异知识,克服特征级和决策级融合的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognizing emotions in dialogues with acoustic and lexical features
Automatic emotion recognition has long been a focus of Affective Computing. We aim at improving the performance of state-of-the-art emotion recognition in dialogues using novel knowledge-inspired features and modality fusion strategies. We propose features based on disfluencies and nonverbal vocalisations (DIS-NVs), and show that they are highly predictive for recognizing emotions in spontaneous dialogues. We also propose the hierarchical fusion strategy as an alternative to current feature-level and decision-level fusion. This fusion strategy combines features from different modalities at different layers in a hierarchical structure. It is expected to overcome limitations of feature-level and decision-level fusion by including knowledge on modality differences, while preserving information of each modality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信