CQNN:卷积二次神经网络

Pranav Mantini, Shishir K. Shah
{"title":"CQNN:卷积二次神经网络","authors":"Pranav Mantini, Shishir K. Shah","doi":"10.1109/ICPR48806.2021.9413207","DOIUrl":null,"url":null,"abstract":"Image classification is a fundamental task in computer vision. A variety of deep learning models based on the Convolutional Neural Network (CNN) architecture have proven to be an efficient solution. Numerous improvements have been proposed over the years, where broader, deeper, and denser networks have been constructed. However, the atomic operation for these models has remained a linear unit (single neuron). In this work, we pursue an alternative dimension by hypothesizing the atomic operation to be performed by a quadratic unit. We construct convolutional layers using quadratic neurons for feature extraction and subsequently use dense layers for classification. We perform analysis to quantify the implication of replacing linear neurons with quadratic units. Results show a keen improvement in classification accuracy with quadratic neurons over linear neurons.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"12 1","pages":"9819-9826"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"CQNN: Convolutional Quadratic Neural Networks\",\"authors\":\"Pranav Mantini, Shishir K. Shah\",\"doi\":\"10.1109/ICPR48806.2021.9413207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image classification is a fundamental task in computer vision. A variety of deep learning models based on the Convolutional Neural Network (CNN) architecture have proven to be an efficient solution. Numerous improvements have been proposed over the years, where broader, deeper, and denser networks have been constructed. However, the atomic operation for these models has remained a linear unit (single neuron). In this work, we pursue an alternative dimension by hypothesizing the atomic operation to be performed by a quadratic unit. We construct convolutional layers using quadratic neurons for feature extraction and subsequently use dense layers for classification. We perform analysis to quantify the implication of replacing linear neurons with quadratic units. Results show a keen improvement in classification accuracy with quadratic neurons over linear neurons.\",\"PeriodicalId\":6783,\"journal\":{\"name\":\"2020 25th International Conference on Pattern Recognition (ICPR)\",\"volume\":\"12 1\",\"pages\":\"9819-9826\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 25th International Conference on Pattern Recognition (ICPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR48806.2021.9413207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th International Conference on Pattern Recognition (ICPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR48806.2021.9413207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

图像分类是计算机视觉的一项基本任务。基于卷积神经网络(CNN)架构的各种深度学习模型已被证明是一种有效的解决方案。多年来,人们提出了许多改进建议,构建了更广泛、更深、更密集的网络。然而,这些模型的原子操作仍然是线性单位(单个神经元)。在这项工作中,我们通过假设原子操作由二次单元执行来追求另一个维度。我们使用二次神经元构造卷积层进行特征提取,随后使用密集层进行分类。我们进行分析来量化用二次单元代替线性神经元的含义。结果表明,与线性神经元相比,二次神经元的分类精度有明显提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CQNN: Convolutional Quadratic Neural Networks
Image classification is a fundamental task in computer vision. A variety of deep learning models based on the Convolutional Neural Network (CNN) architecture have proven to be an efficient solution. Numerous improvements have been proposed over the years, where broader, deeper, and denser networks have been constructed. However, the atomic operation for these models has remained a linear unit (single neuron). In this work, we pursue an alternative dimension by hypothesizing the atomic operation to be performed by a quadratic unit. We construct convolutional layers using quadratic neurons for feature extraction and subsequently use dense layers for classification. We perform analysis to quantify the implication of replacing linear neurons with quadratic units. Results show a keen improvement in classification accuracy with quadratic neurons over linear neurons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信