矩阵随机提升的谱范数

A. Bandeira, Yunzi Ding
{"title":"矩阵随机提升的谱范数","authors":"A. Bandeira, Yunzi Ding","doi":"10.1214/21-ecp415","DOIUrl":null,"url":null,"abstract":"We study the spectral norm of matrix random lifts $A^{(k,\\pi)}$ for a given $n\\times n$ matrix $A$ and $k\\ge 2$, which is a random symmetric $kn\\times kn$ matrix whose $k\\times k$ blocks are obtained by multiplying $A_{ij}$ by a $k\\times k$ matrix drawn independently from a distribution $\\pi$ supported on $k\\times k$ matrices with spectral norm at most $1$. Assuming that $\\mathbb{E}_\\pi X = 0$, we prove that \\[\\mathbb{E} \\|A^{(k,\\pi)}\\|\\lesssim \\max_{i}\\sqrt{\\sum_j A_{ij}^2}+\\max_{ij}|A_{ij}|\\sqrt{\\log (kn)}.\\] This result can be viewed as an extension of existing spectral bounds on random matrices with independent entries, providing further instances where the multiplicative $\\sqrt{\\log n}$ factor in the Non-Commutative Khintchine inequality can be removed. We also show an application on random $k$-lifts of graphs (each vertex of the graph is replaced with $k$ vertices, and each edge is replaced with a random bipartite matching between the two sets of $k$ vertices each). We prove an upper bound of $2(1+\\epsilon)\\sqrt{\\Delta}+O(\\sqrt{\\log(kn)})$ on the new eigenvalues for random $k$-lifts of a fixed $G = (V,E)$ with $|V| = n$ and maximum degree $\\Delta$, compared to the previous result of $O(\\sqrt{\\Delta\\log(kn)})$ by Oliveira [Oli09] and the recent breakthrough by Bordenave and Collins [BC19] which gives $2\\sqrt{\\Delta-1} + o(1)$ as $k\\rightarrow\\infty$ for $\\Delta$-regular graph $G$.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The spectral norm of random lifts of matrices\",\"authors\":\"A. Bandeira, Yunzi Ding\",\"doi\":\"10.1214/21-ecp415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the spectral norm of matrix random lifts $A^{(k,\\\\pi)}$ for a given $n\\\\times n$ matrix $A$ and $k\\\\ge 2$, which is a random symmetric $kn\\\\times kn$ matrix whose $k\\\\times k$ blocks are obtained by multiplying $A_{ij}$ by a $k\\\\times k$ matrix drawn independently from a distribution $\\\\pi$ supported on $k\\\\times k$ matrices with spectral norm at most $1$. Assuming that $\\\\mathbb{E}_\\\\pi X = 0$, we prove that \\\\[\\\\mathbb{E} \\\\|A^{(k,\\\\pi)}\\\\|\\\\lesssim \\\\max_{i}\\\\sqrt{\\\\sum_j A_{ij}^2}+\\\\max_{ij}|A_{ij}|\\\\sqrt{\\\\log (kn)}.\\\\] This result can be viewed as an extension of existing spectral bounds on random matrices with independent entries, providing further instances where the multiplicative $\\\\sqrt{\\\\log n}$ factor in the Non-Commutative Khintchine inequality can be removed. We also show an application on random $k$-lifts of graphs (each vertex of the graph is replaced with $k$ vertices, and each edge is replaced with a random bipartite matching between the two sets of $k$ vertices each). We prove an upper bound of $2(1+\\\\epsilon)\\\\sqrt{\\\\Delta}+O(\\\\sqrt{\\\\log(kn)})$ on the new eigenvalues for random $k$-lifts of a fixed $G = (V,E)$ with $|V| = n$ and maximum degree $\\\\Delta$, compared to the previous result of $O(\\\\sqrt{\\\\Delta\\\\log(kn)})$ by Oliveira [Oli09] and the recent breakthrough by Bordenave and Collins [BC19] which gives $2\\\\sqrt{\\\\Delta-1} + o(1)$ as $k\\\\rightarrow\\\\infty$ for $\\\\Delta$-regular graph $G$.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-ecp415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-ecp415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了矩阵随机提升的谱范数 $A^{(k,\pi)}$ 对于给定的 $n\times n$ 矩阵 $A$ 和 $k\ge 2$,它是随机对称的 $kn\times kn$ 矩阵。 $k\times k$ 块是通过乘法得到的 $A_{ij}$ 由a $k\times k$ 由分布独立绘制的矩阵 $\pi$ 支持单位 $k\times k$ 最多有谱范数的矩阵 $1$. 假设 $\mathbb{E}_\pi X = 0$,我们证明 \[\mathbb{E} \|A^{(k,\pi)}\|\lesssim \max_{i}\sqrt{\sum_j A_{ij}^2}+\max_{ij}|A_{ij}|\sqrt{\log (kn)}.\] 这个结果可以看作是对具有独立条目的随机矩阵的现有谱界的扩展,提供了进一步的实例,其中乘法 $\sqrt{\log n}$ 非交换Khintchine不等式中的因子可以被去除。我们还展示了一个随机应用程序 $k$-图的提升(图的每个顶点被替换为 $k$ ,每条边被替换为两个集合之间的随机二部匹配 $k$ 每个顶点)。我们证明了的上界 $2(1+\epsilon)\sqrt{\Delta}+O(\sqrt{\log(kn)})$ 关于随机的新特征值 $k$-固定的升降机 $G = (V,E)$ 有 $|V| = n$ 最大度 $\Delta$,与之前的结果相比 $O(\sqrt{\Delta\log(kn)})$ Oliveira [Oli09]和Bordenave and Collins [BC19]的最新突破 $2\sqrt{\Delta-1} + o(1)$ as $k\rightarrow\infty$ 为了 $\Delta$-正则图 $G$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The spectral norm of random lifts of matrices
We study the spectral norm of matrix random lifts $A^{(k,\pi)}$ for a given $n\times n$ matrix $A$ and $k\ge 2$, which is a random symmetric $kn\times kn$ matrix whose $k\times k$ blocks are obtained by multiplying $A_{ij}$ by a $k\times k$ matrix drawn independently from a distribution $\pi$ supported on $k\times k$ matrices with spectral norm at most $1$. Assuming that $\mathbb{E}_\pi X = 0$, we prove that \[\mathbb{E} \|A^{(k,\pi)}\|\lesssim \max_{i}\sqrt{\sum_j A_{ij}^2}+\max_{ij}|A_{ij}|\sqrt{\log (kn)}.\] This result can be viewed as an extension of existing spectral bounds on random matrices with independent entries, providing further instances where the multiplicative $\sqrt{\log n}$ factor in the Non-Commutative Khintchine inequality can be removed. We also show an application on random $k$-lifts of graphs (each vertex of the graph is replaced with $k$ vertices, and each edge is replaced with a random bipartite matching between the two sets of $k$ vertices each). We prove an upper bound of $2(1+\epsilon)\sqrt{\Delta}+O(\sqrt{\log(kn)})$ on the new eigenvalues for random $k$-lifts of a fixed $G = (V,E)$ with $|V| = n$ and maximum degree $\Delta$, compared to the previous result of $O(\sqrt{\Delta\log(kn)})$ by Oliveira [Oli09] and the recent breakthrough by Bordenave and Collins [BC19] which gives $2\sqrt{\Delta-1} + o(1)$ as $k\rightarrow\infty$ for $\Delta$-regular graph $G$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信