{"title":"一种分析数据集成对复杂网络扩散模型影响的方法","authors":"J. Nevin, Paul Groth, M. Lees","doi":"10.1093/comnet/cnad025","DOIUrl":null,"url":null,"abstract":"\n Complex networks are a powerful way to reason about systems with non-trivial patterns of interaction. The increased attention in this research area is accelerated by the increasing availability of complex network data sets, with data often being reused as secondary data sources. Typically, multiple data sources are combined to create a larger, fuller picture of these complex networks and in doing so scientists have to make sometimes subjective decisions about how these sources should be integrated. These seemingly trivial decisions can sometimes have significant impact on both the resultant integrated networks and any downstream network models executed on them. We highlight the importance of this impact in online social networks and dark networks, two use-cases where data are regularly combined from multiple sources due to challenges in measurement or overlap of networks. We present a method for systematically testing how different, realistic data integration approaches can alter both the networks themselves and network models run on them, as well as an associated Python package (NIDMod) that implements this method. A number of experiments show the effectiveness of our method in identifying the impact of different data integration setups on network diffusion models.","PeriodicalId":15442,"journal":{"name":"Journal of complex networks","volume":"11 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An approach for analysing the impact of data integration on complex network diffusion models\",\"authors\":\"J. Nevin, Paul Groth, M. Lees\",\"doi\":\"10.1093/comnet/cnad025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Complex networks are a powerful way to reason about systems with non-trivial patterns of interaction. The increased attention in this research area is accelerated by the increasing availability of complex network data sets, with data often being reused as secondary data sources. Typically, multiple data sources are combined to create a larger, fuller picture of these complex networks and in doing so scientists have to make sometimes subjective decisions about how these sources should be integrated. These seemingly trivial decisions can sometimes have significant impact on both the resultant integrated networks and any downstream network models executed on them. We highlight the importance of this impact in online social networks and dark networks, two use-cases where data are regularly combined from multiple sources due to challenges in measurement or overlap of networks. We present a method for systematically testing how different, realistic data integration approaches can alter both the networks themselves and network models run on them, as well as an associated Python package (NIDMod) that implements this method. A number of experiments show the effectiveness of our method in identifying the impact of different data integration setups on network diffusion models.\",\"PeriodicalId\":15442,\"journal\":{\"name\":\"Journal of complex networks\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of complex networks\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/comnet/cnad025\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of complex networks","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/comnet/cnad025","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
An approach for analysing the impact of data integration on complex network diffusion models
Complex networks are a powerful way to reason about systems with non-trivial patterns of interaction. The increased attention in this research area is accelerated by the increasing availability of complex network data sets, with data often being reused as secondary data sources. Typically, multiple data sources are combined to create a larger, fuller picture of these complex networks and in doing so scientists have to make sometimes subjective decisions about how these sources should be integrated. These seemingly trivial decisions can sometimes have significant impact on both the resultant integrated networks and any downstream network models executed on them. We highlight the importance of this impact in online social networks and dark networks, two use-cases where data are regularly combined from multiple sources due to challenges in measurement or overlap of networks. We present a method for systematically testing how different, realistic data integration approaches can alter both the networks themselves and network models run on them, as well as an associated Python package (NIDMod) that implements this method. A number of experiments show the effectiveness of our method in identifying the impact of different data integration setups on network diffusion models.
期刊介绍:
Journal of Complex Networks publishes original articles and reviews with a significant contribution to the analysis and understanding of complex networks and its applications in diverse fields. Complex networks are loosely defined as networks with nontrivial topology and dynamics, which appear as the skeletons of complex systems in the real-world. The journal covers everything from the basic mathematical, physical and computational principles needed for studying complex networks to their applications leading to predictive models in molecular, biological, ecological, informational, engineering, social, technological and other systems. It includes, but is not limited to, the following topics: - Mathematical and numerical analysis of networks - Network theory and computer sciences - Structural analysis of networks - Dynamics on networks - Physical models on networks - Networks and epidemiology - Social, socio-economic and political networks - Ecological networks - Technological and infrastructural networks - Brain and tissue networks - Biological and molecular networks - Spatial networks - Techno-social networks i.e. online social networks, social networking sites, social media - Other applications of networks - Evolving networks - Multilayer networks - Game theory on networks - Biomedicine related networks - Animal social networks - Climate networks - Cognitive, language and informational network