Dragana Prokić-Vidojević, Sandra Glisic, Radojica Pešić, A. Orlović
{"title":"RePd-TiO2 /SiO2气凝胶催化剂强化加氢脱硫二苯并噻吩和4,6 -二甲基二苯并噻吩:动力学参数估计和建模","authors":"Dragana Prokić-Vidojević, Sandra Glisic, Radojica Pešić, A. Orlović","doi":"10.2298/hemind220114008p","DOIUrl":null,"url":null,"abstract":"Re/Pd-TiO2/SiO2 aerogel catalysts were synthesized by using a sol-gel method and supercritical drying in excess solvent and investigated in the reaction of hydrodesulphurisation (HDS) of dibenzothiophene (DBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT). Both Re/Pd catalysts, obtained with and without the use of mesitylene in the synthesis step, have shown increased conversions of up to 70 % in the desulphurization of 4,6-DMDBT, when compared to conventional Co/Mo hydroprocessing catalysts. This observation is of importance for conversion of highly refractory 4,6-DMDBT and hydroprocessing to produce ultra-low sulphur diesel fuels, ULSD. In order to quantify the extent of desulphurisation, which proceeds via a hydrogenation route, conversions of DBT and 4,6-DMDBT along with evolution of reaction products characteristic for the direct desulphurisation route and the hydrogenation route were monitored by using a gas chromatography?mass spectrometry (GC-MS) analytical technique. The reaction was performed at 630 K and 6 MPa in a batch catalytic reactor. The experimental results were used in the Hougen-Watson kinetic model describing DBT and 4,6-DMDBT desulphurisation on ? and ? active sites. Kinetic parameters of this complex catalytic kinetics were determined by using a Genetic Algorithm method and minimum deviation function. Values of calculated kinetic parameters and values of the ratio of 3-methylcyclohexyltoluene (MCHT and dimethyl biphenyl (DMBPH) expressed as the MCHT/(MCHT+DMBPH) ratio ranging between 0.66 and 0.94, have confirmed that the hydrogenation route is the dominant route for desulphurisation of 4,6-DMDBT.","PeriodicalId":9933,"journal":{"name":"Chemical Industry","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Desulphurisation of dibenzothiophene and 4,6–dimethyl dibenzothiophene via enhanced hydrogenation reaction route using RePd–TiO2/SiO2 aerogel catalysts: kinetic parameters estimation and modelling\",\"authors\":\"Dragana Prokić-Vidojević, Sandra Glisic, Radojica Pešić, A. Orlović\",\"doi\":\"10.2298/hemind220114008p\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Re/Pd-TiO2/SiO2 aerogel catalysts were synthesized by using a sol-gel method and supercritical drying in excess solvent and investigated in the reaction of hydrodesulphurisation (HDS) of dibenzothiophene (DBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT). Both Re/Pd catalysts, obtained with and without the use of mesitylene in the synthesis step, have shown increased conversions of up to 70 % in the desulphurization of 4,6-DMDBT, when compared to conventional Co/Mo hydroprocessing catalysts. This observation is of importance for conversion of highly refractory 4,6-DMDBT and hydroprocessing to produce ultra-low sulphur diesel fuels, ULSD. In order to quantify the extent of desulphurisation, which proceeds via a hydrogenation route, conversions of DBT and 4,6-DMDBT along with evolution of reaction products characteristic for the direct desulphurisation route and the hydrogenation route were monitored by using a gas chromatography?mass spectrometry (GC-MS) analytical technique. The reaction was performed at 630 K and 6 MPa in a batch catalytic reactor. The experimental results were used in the Hougen-Watson kinetic model describing DBT and 4,6-DMDBT desulphurisation on ? and ? active sites. Kinetic parameters of this complex catalytic kinetics were determined by using a Genetic Algorithm method and minimum deviation function. Values of calculated kinetic parameters and values of the ratio of 3-methylcyclohexyltoluene (MCHT and dimethyl biphenyl (DMBPH) expressed as the MCHT/(MCHT+DMBPH) ratio ranging between 0.66 and 0.94, have confirmed that the hydrogenation route is the dominant route for desulphurisation of 4,6-DMDBT.\",\"PeriodicalId\":9933,\"journal\":{\"name\":\"Chemical Industry\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Industry\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.2298/hemind220114008p\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Industry","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.2298/hemind220114008p","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Desulphurisation of dibenzothiophene and 4,6–dimethyl dibenzothiophene via enhanced hydrogenation reaction route using RePd–TiO2/SiO2 aerogel catalysts: kinetic parameters estimation and modelling
Re/Pd-TiO2/SiO2 aerogel catalysts were synthesized by using a sol-gel method and supercritical drying in excess solvent and investigated in the reaction of hydrodesulphurisation (HDS) of dibenzothiophene (DBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT). Both Re/Pd catalysts, obtained with and without the use of mesitylene in the synthesis step, have shown increased conversions of up to 70 % in the desulphurization of 4,6-DMDBT, when compared to conventional Co/Mo hydroprocessing catalysts. This observation is of importance for conversion of highly refractory 4,6-DMDBT and hydroprocessing to produce ultra-low sulphur diesel fuels, ULSD. In order to quantify the extent of desulphurisation, which proceeds via a hydrogenation route, conversions of DBT and 4,6-DMDBT along with evolution of reaction products characteristic for the direct desulphurisation route and the hydrogenation route were monitored by using a gas chromatography?mass spectrometry (GC-MS) analytical technique. The reaction was performed at 630 K and 6 MPa in a batch catalytic reactor. The experimental results were used in the Hougen-Watson kinetic model describing DBT and 4,6-DMDBT desulphurisation on ? and ? active sites. Kinetic parameters of this complex catalytic kinetics were determined by using a Genetic Algorithm method and minimum deviation function. Values of calculated kinetic parameters and values of the ratio of 3-methylcyclohexyltoluene (MCHT and dimethyl biphenyl (DMBPH) expressed as the MCHT/(MCHT+DMBPH) ratio ranging between 0.66 and 0.94, have confirmed that the hydrogenation route is the dominant route for desulphurisation of 4,6-DMDBT.