基于高熵合金的近场辐射传热强化

Shan Deng, P. Song, Boxi Zhang, Sen Yao, Zhixin Jin, D. Guo
{"title":"基于高熵合金的近场辐射传热强化","authors":"Shan Deng, P. Song, Boxi Zhang, Sen Yao, Zhixin Jin, D. Guo","doi":"10.33142/rams.v4i2.8463","DOIUrl":null,"url":null,"abstract":"The enhancement of near-field radiative heat transfer (NFRHT) has now become one of the research hotspots in the fields of thermal management and imaging due to its ability to improve the performance of near-field thermoelectric devices and near-field imaging systems.  In this paper, we design three structures (multilayer structure, nanoporous structure, and nanorod structure) based on high-entropy alloys to realize the enhancement of NFRHT. By combining stochastic electrodynamics and Maxwell-Garnett's description of the effective medium, we calculate the radiative heat transfer under different parameters and find that the nanoporous structure has the largest enhancement effect on NFRHT. The near-field heat transfer factor (q) of this structure (q = 1.40×109 W/ (m2•K)) is three times higher than that of the plane structure (q = 4.6×108 W/ (m2•K)), and about two orders of magnitude higher than that of the SiO2 plate. This result provides a fresh idea for the enhancement of NFRHT and will promote the application of high-entropy alloy materials in near-field heat radiation.","PeriodicalId":21005,"journal":{"name":"Research and Application of Materials Science","volume":"363 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of Near-Field Radiative Heat Transfer based on High-Entropy Alloys\",\"authors\":\"Shan Deng, P. Song, Boxi Zhang, Sen Yao, Zhixin Jin, D. Guo\",\"doi\":\"10.33142/rams.v4i2.8463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The enhancement of near-field radiative heat transfer (NFRHT) has now become one of the research hotspots in the fields of thermal management and imaging due to its ability to improve the performance of near-field thermoelectric devices and near-field imaging systems.  In this paper, we design three structures (multilayer structure, nanoporous structure, and nanorod structure) based on high-entropy alloys to realize the enhancement of NFRHT. By combining stochastic electrodynamics and Maxwell-Garnett's description of the effective medium, we calculate the radiative heat transfer under different parameters and find that the nanoporous structure has the largest enhancement effect on NFRHT. The near-field heat transfer factor (q) of this structure (q = 1.40×109 W/ (m2•K)) is three times higher than that of the plane structure (q = 4.6×108 W/ (m2•K)), and about two orders of magnitude higher than that of the SiO2 plate. This result provides a fresh idea for the enhancement of NFRHT and will promote the application of high-entropy alloy materials in near-field heat radiation.\",\"PeriodicalId\":21005,\"journal\":{\"name\":\"Research and Application of Materials Science\",\"volume\":\"363 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research and Application of Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33142/rams.v4i2.8463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research and Application of Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33142/rams.v4i2.8463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

增强近场辐射传热(NFRHT)可以提高近场热电器件和近场成像系统的性能,已成为热管理和成像领域的研究热点之一。本文设计了基于高熵合金的三种结构(多层结构、纳米多孔结构和纳米棒结构)来实现NFRHT的增强。结合随机电动力学和Maxwell-Garnett有效介质描述,计算了不同参数下的辐射换热,发现纳米孔结构对NFRHT的增强作用最大。该结构(q = 1.40×109 W/ (m2•K))的近场传热系数(q = 4.6×108 W/ (m2•K))是平面结构(q = 4.6×108 W/ (m2•K))的3倍,比SiO2板的近场传热系数(q = 4.6×108 W/ (m2•K))高约两个数量级。该结果为增强NFRHT提供了新的思路,将促进高熵合金材料在近场热辐射中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancement of Near-Field Radiative Heat Transfer based on High-Entropy Alloys
The enhancement of near-field radiative heat transfer (NFRHT) has now become one of the research hotspots in the fields of thermal management and imaging due to its ability to improve the performance of near-field thermoelectric devices and near-field imaging systems.  In this paper, we design three structures (multilayer structure, nanoporous structure, and nanorod structure) based on high-entropy alloys to realize the enhancement of NFRHT. By combining stochastic electrodynamics and Maxwell-Garnett's description of the effective medium, we calculate the radiative heat transfer under different parameters and find that the nanoporous structure has the largest enhancement effect on NFRHT. The near-field heat transfer factor (q) of this structure (q = 1.40×109 W/ (m2•K)) is three times higher than that of the plane structure (q = 4.6×108 W/ (m2•K)), and about two orders of magnitude higher than that of the SiO2 plate. This result provides a fresh idea for the enhancement of NFRHT and will promote the application of high-entropy alloy materials in near-field heat radiation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信