电场和磁场的准多项式三维势

IF 0.2 Q4 PHYSICS, MULTIDISCIPLINARY
Nadezhda K. Krasnova , Alexander S. Berdnikov , Konstantin V. Solovyev , Igor A. Averin
{"title":"电场和磁场的准多项式三维势","authors":"Nadezhda K. Krasnova ,&nbsp;Alexander S. Berdnikov ,&nbsp;Konstantin V. Solovyev ,&nbsp;Igor A. Averin","doi":"10.1016/j.spjpm.2017.02.004","DOIUrl":null,"url":null,"abstract":"<div><p>Spectrographic electron and ion optical structures markedly raise the possibilities of modern energy and mass analysis. Electric and magnetic fields which potentials are expressed by functions homogeneous in Euler's sense are the effective instrumentation that is used for creating new spectrographic analytical devices with the determined working characteristics. This paper puts forward and discusses some methods for building 3D harmonic and homogeneous in Euler's sense structures representable as the polynomials of finite degree with respect to one of variables. These strictly mathematical approaches provide a possibility of expanding significantly a class of quasi-polynomial potentials and of enriching modern analytical instrumentation by new spectrographic electrical and magnetic configurations.</p></div>","PeriodicalId":41808,"journal":{"name":"St Petersburg Polytechnic University Journal-Physics and Mathematics","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.spjpm.2017.02.004","citationCount":"0","resultStr":"{\"title\":\"On the quasi-polynomial 3D potentials of electric and magnetic fields\",\"authors\":\"Nadezhda K. Krasnova ,&nbsp;Alexander S. Berdnikov ,&nbsp;Konstantin V. Solovyev ,&nbsp;Igor A. Averin\",\"doi\":\"10.1016/j.spjpm.2017.02.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spectrographic electron and ion optical structures markedly raise the possibilities of modern energy and mass analysis. Electric and magnetic fields which potentials are expressed by functions homogeneous in Euler's sense are the effective instrumentation that is used for creating new spectrographic analytical devices with the determined working characteristics. This paper puts forward and discusses some methods for building 3D harmonic and homogeneous in Euler's sense structures representable as the polynomials of finite degree with respect to one of variables. These strictly mathematical approaches provide a possibility of expanding significantly a class of quasi-polynomial potentials and of enriching modern analytical instrumentation by new spectrographic electrical and magnetic configurations.</p></div>\",\"PeriodicalId\":41808,\"journal\":{\"name\":\"St Petersburg Polytechnic University Journal-Physics and Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.spjpm.2017.02.004\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Polytechnic University Journal-Physics and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405722317300129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Polytechnic University Journal-Physics and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405722317300129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光谱电子和离子光学结构显著提高了现代能量和质量分析的可能性。电场和磁场的势用欧拉意义上的齐次函数表示,是创造具有确定工作特性的新型光谱分析装置的有效工具。本文提出并讨论了用有限次多项式表示的欧拉意义结构的三维调和齐次结构的几种构造方法。这些严格的数学方法提供了显著扩展一类拟多项式势的可能性,并通过新的谱学电和磁结构丰富了现代分析仪器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the quasi-polynomial 3D potentials of electric and magnetic fields

Spectrographic electron and ion optical structures markedly raise the possibilities of modern energy and mass analysis. Electric and magnetic fields which potentials are expressed by functions homogeneous in Euler's sense are the effective instrumentation that is used for creating new spectrographic analytical devices with the determined working characteristics. This paper puts forward and discusses some methods for building 3D harmonic and homogeneous in Euler's sense structures representable as the polynomials of finite degree with respect to one of variables. These strictly mathematical approaches provide a possibility of expanding significantly a class of quasi-polynomial potentials and of enriching modern analytical instrumentation by new spectrographic electrical and magnetic configurations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
50.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信