无控制扩散的G中立型随机泛函微分方程松弛最优控制的存在性

IF 0.1 Q4 MATHEMATICS
Nabil Elgroud, H. Boutabia, A. Redjil, O. Kebiri
{"title":"无控制扩散的G中立型随机泛函微分方程松弛最优控制的存在性","authors":"Nabil Elgroud, H. Boutabia, A. Redjil, O. Kebiri","doi":"10.21915/bimas.2022202","DOIUrl":null,"url":null,"abstract":"In this paper, we study under refined Lipschitz hypothesis, the question of existence and uniqueness of solution of controlled neutral stochastic functional differential equations driven by G -Brownian motion ( G -NSFDEs in short). An existence of a relaxed optimal control where the neutral and diffusion terms do not depend on the control variable was the main result of the article. The latter is done by using tightness techniques and the weak convergence techniques for each probability measure in the set of all possible probabilities of our dynamic. A motivation of our work is presented and a numerical analysis for the uncontrolled G -NSFDE is given.","PeriodicalId":43960,"journal":{"name":"Bulletin of the Institute of Mathematics Academia Sinica New Series","volume":"238 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Existence of relaxed optimal control for $G$-neutral stochastic functional differential equations with uncontrolled diffusion\",\"authors\":\"Nabil Elgroud, H. Boutabia, A. Redjil, O. Kebiri\",\"doi\":\"10.21915/bimas.2022202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study under refined Lipschitz hypothesis, the question of existence and uniqueness of solution of controlled neutral stochastic functional differential equations driven by G -Brownian motion ( G -NSFDEs in short). An existence of a relaxed optimal control where the neutral and diffusion terms do not depend on the control variable was the main result of the article. The latter is done by using tightness techniques and the weak convergence techniques for each probability measure in the set of all possible probabilities of our dynamic. A motivation of our work is presented and a numerical analysis for the uncontrolled G -NSFDE is given.\",\"PeriodicalId\":43960,\"journal\":{\"name\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"volume\":\"238 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2022-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21915/bimas.2022202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Institute of Mathematics Academia Sinica New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21915/bimas.2022202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了在改进Lipschitz假设下G - brown运动驱动的受控中立型随机泛函微分方程(简称G -NSFDEs)解的存在唯一性问题。本文的主要结果是存在一个松弛的最优控制,其中中性项和扩散项不依赖于控制变量。后者是通过使用紧性技术和弱收敛技术对我们的动态的所有可能的概率集合中的每个概率度量来完成的。提出了研究的动机,并对非受控G -NSFDE进行了数值分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of relaxed optimal control for $G$-neutral stochastic functional differential equations with uncontrolled diffusion
In this paper, we study under refined Lipschitz hypothesis, the question of existence and uniqueness of solution of controlled neutral stochastic functional differential equations driven by G -Brownian motion ( G -NSFDEs in short). An existence of a relaxed optimal control where the neutral and diffusion terms do not depend on the control variable was the main result of the article. The latter is done by using tightness techniques and the weak convergence techniques for each probability measure in the set of all possible probabilities of our dynamic. A motivation of our work is presented and a numerical analysis for the uncontrolled G -NSFDE is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
50.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信