{"title":"一些黏着图的谱半径","authors":"Qingning Wang","doi":"10.4236/AM.2021.124017","DOIUrl":null,"url":null,"abstract":"The spectral radius of a graph is the maximum eigenvalues of its adjacency matrix. In this paper, using the property of quotient graph, the sharp upper bounds for the spectral radii of some adhesive graphs are determined.","PeriodicalId":55568,"journal":{"name":"Applied Mathematics-A Journal of Chinese Universities Series B","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Spectral Radii of Some Adhesive Graphs\",\"authors\":\"Qingning Wang\",\"doi\":\"10.4236/AM.2021.124017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spectral radius of a graph is the maximum eigenvalues of its adjacency matrix. In this paper, using the property of quotient graph, the sharp upper bounds for the spectral radii of some adhesive graphs are determined.\",\"PeriodicalId\":55568,\"journal\":{\"name\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4236/AM.2021.124017\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics-A Journal of Chinese Universities Series B","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4236/AM.2021.124017","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The spectral radius of a graph is the maximum eigenvalues of its adjacency matrix. In this paper, using the property of quotient graph, the sharp upper bounds for the spectral radii of some adhesive graphs are determined.
期刊介绍:
Applied Mathematics promotes the integration of mathematics with other scientific disciplines, expanding its fields of study and promoting the development of relevant interdisciplinary subjects.
The journal mainly publishes original research papers that apply mathematical concepts, theories and methods to other subjects such as physics, chemistry, biology, information science, energy, environmental science, economics, and finance. In addition, it also reports the latest developments and trends in which mathematics interacts with other disciplines. Readers include professors and students, professionals in applied mathematics, and engineers at research institutes and in industry.
Applied Mathematics - A Journal of Chinese Universities has been an English-language quarterly since 1993. The English edition, abbreviated as Series B, has different contents than this Chinese edition, Series A.