{"title":"显式两步龙格-库塔方法","authors":"Z. Jackiewicz, R. Renaut, M. Zennaro","doi":"10.21136/am.1995.134306","DOIUrl":null,"url":null,"abstract":"The explicit two-step Runge-Kutta (TSRK) formulas for the numerical solution of ordinary differential equations are analyzed. The order conditions are derived and the construction of such methods based on some simplifying assumptions is described. Order barriers are also presented. It turns out that for order $p\\le 5$ the minimal number of stages for explicit TSRK method of order $p$ is equal to the minimal number of stages for explicit Runge-Kutta method of order $p-1$. Numerical results are presented which demonstrate that constant step size TSRK can be both effectively and efficiently used in an Euler equation solver. Furthermore, a comparison with a variable step size formulation shows that in these solvers the variable step size formulation offers no advantages compared to the constant step size implementation.","PeriodicalId":55505,"journal":{"name":"Applications of Mathematics","volume":"121 1","pages":"433-456"},"PeriodicalIF":0.6000,"publicationDate":"1995-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Explicit two-step Runge-Kutta methods\",\"authors\":\"Z. Jackiewicz, R. Renaut, M. Zennaro\",\"doi\":\"10.21136/am.1995.134306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The explicit two-step Runge-Kutta (TSRK) formulas for the numerical solution of ordinary differential equations are analyzed. The order conditions are derived and the construction of such methods based on some simplifying assumptions is described. Order barriers are also presented. It turns out that for order $p\\\\le 5$ the minimal number of stages for explicit TSRK method of order $p$ is equal to the minimal number of stages for explicit Runge-Kutta method of order $p-1$. Numerical results are presented which demonstrate that constant step size TSRK can be both effectively and efficiently used in an Euler equation solver. Furthermore, a comparison with a variable step size formulation shows that in these solvers the variable step size formulation offers no advantages compared to the constant step size implementation.\",\"PeriodicalId\":55505,\"journal\":{\"name\":\"Applications of Mathematics\",\"volume\":\"121 1\",\"pages\":\"433-456\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"1995-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21136/am.1995.134306\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/am.1995.134306","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The explicit two-step Runge-Kutta (TSRK) formulas for the numerical solution of ordinary differential equations are analyzed. The order conditions are derived and the construction of such methods based on some simplifying assumptions is described. Order barriers are also presented. It turns out that for order $p\le 5$ the minimal number of stages for explicit TSRK method of order $p$ is equal to the minimal number of stages for explicit Runge-Kutta method of order $p-1$. Numerical results are presented which demonstrate that constant step size TSRK can be both effectively and efficiently used in an Euler equation solver. Furthermore, a comparison with a variable step size formulation shows that in these solvers the variable step size formulation offers no advantages compared to the constant step size implementation.
期刊介绍:
Applications of Mathematics publishes original high quality research papers that are directed towards applications of mathematical methods in various branches of science and engineering.
The main topics covered include:
- Mechanics of Solids;
- Fluid Mechanics;
- Electrical Engineering;
- Solutions of Differential and Integral Equations;
- Mathematical Physics;
- Optimization;
- Probability
Mathematical Statistics.
The journal is of interest to a wide audience of mathematicians, scientists and engineers concerned with the development of scientific computing, mathematical statistics and applicable mathematics in general.