Shizuka Koshimizu, Sachiko Masuda, Arisa Shibata, Takayoshi Ishii, K. Shirasu, A. Hoshino, Masanori Arita
{"title":"基因组和转录组分析揭示了参与木槿花瓣表皮细胞细脊形成的基因","authors":"Shizuka Koshimizu, Sachiko Masuda, Arisa Shibata, Takayoshi Ishii, K. Shirasu, A. Hoshino, Masanori Arita","doi":"10.1101/2023.05.23.541865","DOIUrl":null,"url":null,"abstract":"Hibiscus trionum, commonly known as the ’Flower of an Hour’, is an easily cultivated plant in the Malvaceae family. The purple base part of its petal exhibits structural color due to the fine ridges on the epidermal cell surface, and the molecular mechanism of ridge formation has been actively investigated. We performed genome sequencing of H. trionum using a long-read sequencing technology with transcriptome and pathway analyses to identify candidate genes for fine structure formation. The ortholog of AtSHINE1, which is involved in the biosynthesis of cuticular wax in Arabidopsis thaliana, was significantly overexpressed in the iridescent tissue. In addition, orthologs of AtCUS2 and AtCYP77A, which contribute to cutin synthesis, were also overexpressed. Our results provide important insights into the formation of fine ridges on epidermal cells in plants using H. trionum as a model.","PeriodicalId":11212,"journal":{"name":"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome and transcriptome analyses reveal genes involved in the formation of fine ridges on petal epidermal cells in Hibiscus trionum\",\"authors\":\"Shizuka Koshimizu, Sachiko Masuda, Arisa Shibata, Takayoshi Ishii, K. Shirasu, A. Hoshino, Masanori Arita\",\"doi\":\"10.1101/2023.05.23.541865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hibiscus trionum, commonly known as the ’Flower of an Hour’, is an easily cultivated plant in the Malvaceae family. The purple base part of its petal exhibits structural color due to the fine ridges on the epidermal cell surface, and the molecular mechanism of ridge formation has been actively investigated. We performed genome sequencing of H. trionum using a long-read sequencing technology with transcriptome and pathway analyses to identify candidate genes for fine structure formation. The ortholog of AtSHINE1, which is involved in the biosynthesis of cuticular wax in Arabidopsis thaliana, was significantly overexpressed in the iridescent tissue. In addition, orthologs of AtCUS2 and AtCYP77A, which contribute to cutin synthesis, were also overexpressed. Our results provide important insights into the formation of fine ridges on epidermal cells in plants using H. trionum as a model.\",\"PeriodicalId\":11212,\"journal\":{\"name\":\"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.05.23.541865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.05.23.541865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Genome and transcriptome analyses reveal genes involved in the formation of fine ridges on petal epidermal cells in Hibiscus trionum
Hibiscus trionum, commonly known as the ’Flower of an Hour’, is an easily cultivated plant in the Malvaceae family. The purple base part of its petal exhibits structural color due to the fine ridges on the epidermal cell surface, and the molecular mechanism of ridge formation has been actively investigated. We performed genome sequencing of H. trionum using a long-read sequencing technology with transcriptome and pathway analyses to identify candidate genes for fine structure formation. The ortholog of AtSHINE1, which is involved in the biosynthesis of cuticular wax in Arabidopsis thaliana, was significantly overexpressed in the iridescent tissue. In addition, orthologs of AtCUS2 and AtCYP77A, which contribute to cutin synthesis, were also overexpressed. Our results provide important insights into the formation of fine ridges on epidermal cells in plants using H. trionum as a model.