M. J. Gómez-Silva, A. D. L. Escalera, J. M. Armingol
{"title":"基于深度三重学习模型的马氏距离反向传播","authors":"M. J. Gómez-Silva, A. D. L. Escalera, J. M. Armingol","doi":"10.3233/ICA-210651","DOIUrl":null,"url":null,"abstract":"The automatization of the Re-Identification of an individual across different video-surveillance cameras poses a significant challenge due to the presence of a vast number of potential candidates with a similar appearance. This task requires the learning of discriminative features from person images and a distance metric to properly compare them and decide whether they belong to the same person or not. Nevertheless, the fact of acquiring images of the same person from different, distant and non-overlapping views produces changes in illumination, perspective, background, resolution and scale between the person’s representations, resulting in appearance variations that hamper his/her re-identification. This article focuses the feature learning on automatically finding discriminative descriptors able to reflect the dissimilarities mainly due to the changes in actual people appearance, independently from the variations introduced by the acquisition point. With that purpose, such variations have been implicitly embedded by the Mahalanobis distance. This article presents a learning algorithm to jointly model features and the Mahalanobis distance through a Deep Neural Re-Identification model. The Mahalanobis distance learning has been implemented as a novel neural layer, forming part of a Triplet Learning model that has been evaluated over PRID2011 dataset, providing satisfactory results.","PeriodicalId":50358,"journal":{"name":"Integrated Computer-Aided Engineering","volume":"75 1","pages":"277-294"},"PeriodicalIF":5.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Back-propagation of the Mahalanobis istance through a deep triplet learning model for person Re-Identification\",\"authors\":\"M. J. Gómez-Silva, A. D. L. Escalera, J. M. Armingol\",\"doi\":\"10.3233/ICA-210651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The automatization of the Re-Identification of an individual across different video-surveillance cameras poses a significant challenge due to the presence of a vast number of potential candidates with a similar appearance. This task requires the learning of discriminative features from person images and a distance metric to properly compare them and decide whether they belong to the same person or not. Nevertheless, the fact of acquiring images of the same person from different, distant and non-overlapping views produces changes in illumination, perspective, background, resolution and scale between the person’s representations, resulting in appearance variations that hamper his/her re-identification. This article focuses the feature learning on automatically finding discriminative descriptors able to reflect the dissimilarities mainly due to the changes in actual people appearance, independently from the variations introduced by the acquisition point. With that purpose, such variations have been implicitly embedded by the Mahalanobis distance. This article presents a learning algorithm to jointly model features and the Mahalanobis distance through a Deep Neural Re-Identification model. The Mahalanobis distance learning has been implemented as a novel neural layer, forming part of a Triplet Learning model that has been evaluated over PRID2011 dataset, providing satisfactory results.\",\"PeriodicalId\":50358,\"journal\":{\"name\":\"Integrated Computer-Aided Engineering\",\"volume\":\"75 1\",\"pages\":\"277-294\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrated Computer-Aided Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/ICA-210651\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Computer-Aided Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ICA-210651","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Back-propagation of the Mahalanobis istance through a deep triplet learning model for person Re-Identification
The automatization of the Re-Identification of an individual across different video-surveillance cameras poses a significant challenge due to the presence of a vast number of potential candidates with a similar appearance. This task requires the learning of discriminative features from person images and a distance metric to properly compare them and decide whether they belong to the same person or not. Nevertheless, the fact of acquiring images of the same person from different, distant and non-overlapping views produces changes in illumination, perspective, background, resolution and scale between the person’s representations, resulting in appearance variations that hamper his/her re-identification. This article focuses the feature learning on automatically finding discriminative descriptors able to reflect the dissimilarities mainly due to the changes in actual people appearance, independently from the variations introduced by the acquisition point. With that purpose, such variations have been implicitly embedded by the Mahalanobis distance. This article presents a learning algorithm to jointly model features and the Mahalanobis distance through a Deep Neural Re-Identification model. The Mahalanobis distance learning has been implemented as a novel neural layer, forming part of a Triplet Learning model that has been evaluated over PRID2011 dataset, providing satisfactory results.
期刊介绍:
Integrated Computer-Aided Engineering (ICAE) was founded in 1993. "Based on the premise that interdisciplinary thinking and synergistic collaboration of disciplines can solve complex problems, open new frontiers, and lead to true innovations and breakthroughs, the cornerstone of industrial competitiveness and advancement of the society" as noted in the inaugural issue of the journal.
The focus of ICAE is the integration of leading edge and emerging computer and information technologies for innovative solution of engineering problems. The journal fosters interdisciplinary research and presents a unique forum for innovative computer-aided engineering. It also publishes novel industrial applications of CAE, thus helping to bring new computational paradigms from research labs and classrooms to reality. Areas covered by the journal include (but are not limited to) artificial intelligence, advanced signal processing, biologically inspired computing, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, intelligent and adaptive systems, internet-based technologies, knowledge discovery and engineering, machine learning, mechatronics, mobile computing, multimedia technologies, networking, neural network computing, object-oriented systems, optimization and search, parallel processing, robotics virtual reality, and visualization techniques.