基于Canny边缘检测器的稳健SLIC分割方法

S. Pal, Ayush Roy, P. Shivakumara, U. Pal
{"title":"基于Canny边缘检测器的稳健SLIC分割方法","authors":"S. Pal, Ayush Roy, P. Shivakumara, U. Pal","doi":"10.47852/bonviewaia32021196","DOIUrl":null,"url":null,"abstract":"An accurate image segmentation in noisy environment is complex and challenging. Unlike existing state-of-the-art methods that use superpixels for successful segmentation, we propose a new approach for noise-robust SLIC (Simple Linear Iterative Clustering) segmentation that incorporates a Canny edge detector. By leveraging Canny edge information, the proposed method modifies the pixel intensity distance measurement to overcome boundary adherence challenge. Furthermore, we adopt a selective approach to update cluster centers, focusing on pixels that contribute less to the noise. Extensive experiments on synthetic noisy images demonstrate the effectiveness of our approach. It significantly improves SLIC's performance in noisy image segmentation and boundary adherence, making it a promising technique for vision processing tasks.","PeriodicalId":91205,"journal":{"name":"Artificial intelligence and applications (Commerce, Calif.)","volume":"125 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Robust SLIC Based Approach for Segmentation using Canny Edge Detector\",\"authors\":\"S. Pal, Ayush Roy, P. Shivakumara, U. Pal\",\"doi\":\"10.47852/bonviewaia32021196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An accurate image segmentation in noisy environment is complex and challenging. Unlike existing state-of-the-art methods that use superpixels for successful segmentation, we propose a new approach for noise-robust SLIC (Simple Linear Iterative Clustering) segmentation that incorporates a Canny edge detector. By leveraging Canny edge information, the proposed method modifies the pixel intensity distance measurement to overcome boundary adherence challenge. Furthermore, we adopt a selective approach to update cluster centers, focusing on pixels that contribute less to the noise. Extensive experiments on synthetic noisy images demonstrate the effectiveness of our approach. It significantly improves SLIC's performance in noisy image segmentation and boundary adherence, making it a promising technique for vision processing tasks.\",\"PeriodicalId\":91205,\"journal\":{\"name\":\"Artificial intelligence and applications (Commerce, Calif.)\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence and applications (Commerce, Calif.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47852/bonviewaia32021196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence and applications (Commerce, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47852/bonviewaia32021196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

噪声环境下的精确图像分割是一个复杂而具有挑战性的问题。与现有使用超像素进行成功分割的最先进方法不同,我们提出了一种包含Canny边缘检测器的噪声鲁棒SLIC(简单线性迭代聚类)分割新方法。该方法利用Canny边缘信息,对像素强度距离测量方法进行修正,克服了边界粘附性问题。此外,我们采用了一种选择性的方法来更新聚类中心,专注于对噪声贡献较小的像素。大量的合成噪声图像实验证明了该方法的有效性。它显著提高了SLIC在噪声图像分割和边界粘附方面的性能,使其成为一种很有前途的视觉处理技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust SLIC Based Approach for Segmentation using Canny Edge Detector
An accurate image segmentation in noisy environment is complex and challenging. Unlike existing state-of-the-art methods that use superpixels for successful segmentation, we propose a new approach for noise-robust SLIC (Simple Linear Iterative Clustering) segmentation that incorporates a Canny edge detector. By leveraging Canny edge information, the proposed method modifies the pixel intensity distance measurement to overcome boundary adherence challenge. Furthermore, we adopt a selective approach to update cluster centers, focusing on pixels that contribute less to the noise. Extensive experiments on synthetic noisy images demonstrate the effectiveness of our approach. It significantly improves SLIC's performance in noisy image segmentation and boundary adherence, making it a promising technique for vision processing tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信